Jiayue Hu, Yuhang Liu, Xiangxiang Zeng, Quan Zou, Ran Su, Leyi Wei
{"title":"Multi-modal deep representation learning accurately identifies and interprets drug-target interactions.","authors":"Jiayue Hu, Yuhang Liu, Xiangxiang Zeng, Quan Zou, Ran Su, Leyi Wei","doi":"10.1109/JBHI.2025.3553217","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning offers efficient solutions for drug-target interaction prediction, but current methods often fail to capture the full complexity of multi-modal data (i.e. sequence, graphs, and three-dimensional structures), limiting both performance and generalization. Here, we present UnitedDTA, a novel explainable deep learning framework capable of integrating multi-modal biomolecule data to improve the binding affinity prediction, especially for novel (unseen) drugs and targets. UnitedDTA enables automatic learning unified discriminative representations from multi-modality data via contrastive learning and cross-attention mechanisms for cross-modality alignment and integration. Comparative results on multiple benchmark datasets show that UnitedDTA significantly outperforms the state-of-the-art drug-target affinity prediction methods and exhibits better generalization ability in predicting unseen drug-target pairs. More importantly, unlike most \"black-box\" deep learning methods, our well-established model offers better interpretability which enables us to directly infer the important substructures of the drug-target complexes that influence the binding activity, thus providing the insights in unveiling the binding preferences. Moreover, by extending UnitedDTA to other downstream tasks (e.g. molecular property prediction), we showcase the proposed multi-modal representation learning is capable of capturing the latent molecular representations that are closely associated with the molecular property, demonstrating the broad application potential for advancing the drug discovery process.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3553217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning offers efficient solutions for drug-target interaction prediction, but current methods often fail to capture the full complexity of multi-modal data (i.e. sequence, graphs, and three-dimensional structures), limiting both performance and generalization. Here, we present UnitedDTA, a novel explainable deep learning framework capable of integrating multi-modal biomolecule data to improve the binding affinity prediction, especially for novel (unseen) drugs and targets. UnitedDTA enables automatic learning unified discriminative representations from multi-modality data via contrastive learning and cross-attention mechanisms for cross-modality alignment and integration. Comparative results on multiple benchmark datasets show that UnitedDTA significantly outperforms the state-of-the-art drug-target affinity prediction methods and exhibits better generalization ability in predicting unseen drug-target pairs. More importantly, unlike most "black-box" deep learning methods, our well-established model offers better interpretability which enables us to directly infer the important substructures of the drug-target complexes that influence the binding activity, thus providing the insights in unveiling the binding preferences. Moreover, by extending UnitedDTA to other downstream tasks (e.g. molecular property prediction), we showcase the proposed multi-modal representation learning is capable of capturing the latent molecular representations that are closely associated with the molecular property, demonstrating the broad application potential for advancing the drug discovery process.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.