miRNA let-7f-5p-encapsulated labial gland MSC-derived EVs ameliorate experimental Sjögren's syndrome by suppressing Th17 cells via targeting RORC/IL-17A signaling axis.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-03-20 DOI:10.1186/s12951-025-03308-y
Yufei Xie, Maosheng Chai, Yixiao Xing, Peiru Zhou, Pan Wei, Hong Hua
{"title":"miRNA let-7f-5p-encapsulated labial gland MSC-derived EVs ameliorate experimental Sjögren's syndrome by suppressing Th17 cells via targeting RORC/IL-17A signaling axis.","authors":"Yufei Xie, Maosheng Chai, Yixiao Xing, Peiru Zhou, Pan Wei, Hong Hua","doi":"10.1186/s12951-025-03308-y","DOIUrl":null,"url":null,"abstract":"<p><p>Sjögren's syndrome (SS) is an autoimmune disease primarily affecting salivary glands, with xerostomia as a distinct clinical manifestation. This disease also poses a significantly increased risk of lymphoma, severely impacting patients' quality of life. The imbalance between Th17 and Treg cells plays a critical role in SS progression, driving severe immune dysregulation, chronic inflammation, and escalating tissue dysfunction. However, current clinical treatments for SS still remain limited, and it continues to be recognized as a refractory disease. Therefore, the development of novel and effective therapeutic strategies is a pressing demand in clinical research. In recent years, extracellular vesicle (EV) therapy has emerged as a promising approach for autoimmune disease treatment, showing encouraging outcomes in modulating immune balance and alleviating symptoms. EVs carry diverse cargo, among which microRNAs (miRNAs) are highly abundant and play critical roles. These small RNAs are essential for EV-mediated functions, particularly in regulating gene expression and modulating the immune microenvironment. Our research team first isolated labial gland mesenchymal stem cells (LGMSCs) and their derived EVs (LGMSC-EVs), which offer potential therapeutic advantages in SS due to their salivary gland origin. Then we screened and identified the highly enriched miRNA let-7f-5p as a key regulator through miRNA profiling analysis. To achieve better therapeutic outcomes, we transfected exogenous miRNA let-7f-5p into LGMSC-EVs to upregulate its expression, thereby constructing let-7f-5p-encapsulated LGMSC-EVs. These modified EVs were subsequently tested in an experimental SS mouse model to evaluate their therapeutic potential. The upregulation of miRNA let-7f-5p in LGMSC-EVs significantly enhanced their therapeutic effects, resulting in clinical improvements such as increased salivary flow and reduced lymphocytic infiltration. Mechanistically, let-7f-5p-encapsulated LGMSC-EVs suppressed Th17 cells by directly targeting the 3'-untranslated region (3'UTR) of RORC, inhibiting the RORC/IL-17A signaling axis, and reducing IL-17A production, thereby restoring Th17/Treg balance and promoting an anti-inflammatory profile. Collectively, this let-7f-5p-encapsulated LGMSC-EV therapy offers a promising target-driven approach for the treatment of SS, achieving improved clinical outcomes and immune rebalance after modification with miRNA let-7f-5p, which presents new potential for the clinical treatment of SS.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"228"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03308-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sjögren's syndrome (SS) is an autoimmune disease primarily affecting salivary glands, with xerostomia as a distinct clinical manifestation. This disease also poses a significantly increased risk of lymphoma, severely impacting patients' quality of life. The imbalance between Th17 and Treg cells plays a critical role in SS progression, driving severe immune dysregulation, chronic inflammation, and escalating tissue dysfunction. However, current clinical treatments for SS still remain limited, and it continues to be recognized as a refractory disease. Therefore, the development of novel and effective therapeutic strategies is a pressing demand in clinical research. In recent years, extracellular vesicle (EV) therapy has emerged as a promising approach for autoimmune disease treatment, showing encouraging outcomes in modulating immune balance and alleviating symptoms. EVs carry diverse cargo, among which microRNAs (miRNAs) are highly abundant and play critical roles. These small RNAs are essential for EV-mediated functions, particularly in regulating gene expression and modulating the immune microenvironment. Our research team first isolated labial gland mesenchymal stem cells (LGMSCs) and their derived EVs (LGMSC-EVs), which offer potential therapeutic advantages in SS due to their salivary gland origin. Then we screened and identified the highly enriched miRNA let-7f-5p as a key regulator through miRNA profiling analysis. To achieve better therapeutic outcomes, we transfected exogenous miRNA let-7f-5p into LGMSC-EVs to upregulate its expression, thereby constructing let-7f-5p-encapsulated LGMSC-EVs. These modified EVs were subsequently tested in an experimental SS mouse model to evaluate their therapeutic potential. The upregulation of miRNA let-7f-5p in LGMSC-EVs significantly enhanced their therapeutic effects, resulting in clinical improvements such as increased salivary flow and reduced lymphocytic infiltration. Mechanistically, let-7f-5p-encapsulated LGMSC-EVs suppressed Th17 cells by directly targeting the 3'-untranslated region (3'UTR) of RORC, inhibiting the RORC/IL-17A signaling axis, and reducing IL-17A production, thereby restoring Th17/Treg balance and promoting an anti-inflammatory profile. Collectively, this let-7f-5p-encapsulated LGMSC-EV therapy offers a promising target-driven approach for the treatment of SS, achieving improved clinical outcomes and immune rebalance after modification with miRNA let-7f-5p, which presents new potential for the clinical treatment of SS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Intranasal delivery of engineered extracellular vesicles promotes neurofunctional recovery in traumatic brain injury. Micro/Nanoplastics in plantation agricultural products: behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. Small extracellular vesicles: crucial mediators for prostate cancer. miRNA let-7f-5p-encapsulated labial gland MSC-derived EVs ameliorate experimental Sjögren's syndrome by suppressing Th17 cells via targeting RORC/IL-17A signaling axis. Reducing severity of inflammatory bowel disease through colonization of Lactiplantibacillus plantarum and its extracellular vesicles release.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1