Yuanyuan Wu, Xinyue Huang, Qianbei Li, Chaoqun Yang, Xixin Huang, Hualongyue Du, Bo Situ, Lei Zheng, Zihao Ou
{"title":"Reducing severity of inflammatory bowel disease through colonization of Lactiplantibacillus plantarum and its extracellular vesicles release.","authors":"Yuanyuan Wu, Xinyue Huang, Qianbei Li, Chaoqun Yang, Xixin Huang, Hualongyue Du, Bo Situ, Lei Zheng, Zihao Ou","doi":"10.1186/s12951-025-03280-7","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is characterized by compromised intestinal barrier function and a lack of effective treatments. Probiotics have shown promise in managing IBD due to their ability to modulate the gut microbiota, enhance intestinal barrier function, and exert anti-inflammatory effects. However, the specific mechanisms through which probiotics exert these therapeutic effects in IBD treatment remain poorly understood. Our research revealed a significant reduction of Lactiplantibacillus plantarum (L. plantarum) in the gut microbiota of IBD patients. L. plantarum is a well-known probiotic strain in the list of edible probiotics, recognized for its beneficial effects on gut health, including its ability to strengthen the intestinal barrier and reduce inflammation. We demonstrated that supplementation with L. plantarum could alleviate IBD symptoms in mice, primarily by inhibiting apoptosis in intestinal epithelial cells through L. plantarum's bacterial extracellular vesicles (L. plant-EVs). This protective effect is dependent on the efficient uptake of L. plant-EVs by intestinal cells. Intriguingly, watermelon enhances L. plantarum colonization and L. plant-EVs release, further promoting intestinal barrier repair. Our findings contribute to the understanding of L. plant-EVs in the probiotic-based therapeutic approach for IBD, as they are promising candidates for nanoparticle-based therapeutic methods that are enhanced by natural diets such as watermelon. This study thereby offers a potential breakthrough in the management and treatment of IBD.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"227"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03280-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory bowel disease (IBD) is characterized by compromised intestinal barrier function and a lack of effective treatments. Probiotics have shown promise in managing IBD due to their ability to modulate the gut microbiota, enhance intestinal barrier function, and exert anti-inflammatory effects. However, the specific mechanisms through which probiotics exert these therapeutic effects in IBD treatment remain poorly understood. Our research revealed a significant reduction of Lactiplantibacillus plantarum (L. plantarum) in the gut microbiota of IBD patients. L. plantarum is a well-known probiotic strain in the list of edible probiotics, recognized for its beneficial effects on gut health, including its ability to strengthen the intestinal barrier and reduce inflammation. We demonstrated that supplementation with L. plantarum could alleviate IBD symptoms in mice, primarily by inhibiting apoptosis in intestinal epithelial cells through L. plantarum's bacterial extracellular vesicles (L. plant-EVs). This protective effect is dependent on the efficient uptake of L. plant-EVs by intestinal cells. Intriguingly, watermelon enhances L. plantarum colonization and L. plant-EVs release, further promoting intestinal barrier repair. Our findings contribute to the understanding of L. plant-EVs in the probiotic-based therapeutic approach for IBD, as they are promising candidates for nanoparticle-based therapeutic methods that are enhanced by natural diets such as watermelon. This study thereby offers a potential breakthrough in the management and treatment of IBD.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.