A Language-Guided Progressive Fusion Network with semantic density alignment for medical visual question answering.

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2025-03-18 DOI:10.1016/j.jbi.2025.104811
Shuxian Du, Shuang Liang, Yu Gu
{"title":"A Language-Guided Progressive Fusion Network with semantic density alignment for medical visual question answering.","authors":"Shuxian Du, Shuang Liang, Yu Gu","doi":"10.1016/j.jbi.2025.104811","DOIUrl":null,"url":null,"abstract":"<p><p>Medical Visual Question Answering (Med-VQA) is a critical multimodal task with the potential to address the scarcity and imbalance of medical resources. However, most existing studies overlook the limitations of the inconsistency in information density between medical images and text, as well as the long-tail distribution in datasets, which continue to make Med-VQA an open challenge. To overcome these issues, this study proposes a Language-Guided Progressive Fusion Network (LGPFN) with three key modules: Question-Guided Progressive Multimodal Fusion (QPMF), Language-Gate Mechanism (LGM), and Triple Semantic Feature Alignment (TriSFA). QPMF progressively guides the fusion of visual and textual features using both global and local question representations. LGM, a linguistic rule-based module, distinguishes between Closed-Ended (CE) and Open-Ended (OE) samples, directing the fused features to the appropriate classifiers. Finally, TriSFA captures the rich semantic information of OE answers and mine the underlying associations among fused features, predicted answers, and ground truths, aligning them in a ternary semantic feature space. The proposed LGPFN framework outperforms existing state-of-the-art models, achieving the best overall accuracies of 80.39%, 84.07%, 75.74%, and 70.60% on the VQA-RAD, SLAKE, PathVQA, and VQA-Med 2019 datasets, respectively. These results demonstrate the effectiveness and generalizability of the proposed model, underscoring its potential as a medical Artificial Intelligent (AI) agent that could benefit universal health coverage.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104811"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104811","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Medical Visual Question Answering (Med-VQA) is a critical multimodal task with the potential to address the scarcity and imbalance of medical resources. However, most existing studies overlook the limitations of the inconsistency in information density between medical images and text, as well as the long-tail distribution in datasets, which continue to make Med-VQA an open challenge. To overcome these issues, this study proposes a Language-Guided Progressive Fusion Network (LGPFN) with three key modules: Question-Guided Progressive Multimodal Fusion (QPMF), Language-Gate Mechanism (LGM), and Triple Semantic Feature Alignment (TriSFA). QPMF progressively guides the fusion of visual and textual features using both global and local question representations. LGM, a linguistic rule-based module, distinguishes between Closed-Ended (CE) and Open-Ended (OE) samples, directing the fused features to the appropriate classifiers. Finally, TriSFA captures the rich semantic information of OE answers and mine the underlying associations among fused features, predicted answers, and ground truths, aligning them in a ternary semantic feature space. The proposed LGPFN framework outperforms existing state-of-the-art models, achieving the best overall accuracies of 80.39%, 84.07%, 75.74%, and 70.60% on the VQA-RAD, SLAKE, PathVQA, and VQA-Med 2019 datasets, respectively. These results demonstrate the effectiveness and generalizability of the proposed model, underscoring its potential as a medical Artificial Intelligent (AI) agent that could benefit universal health coverage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
Uncovering hidden subtypes in dementia: An unsupervised machine learning approach to dementia diagnosis and personalization of care. A Language-Guided Progressive Fusion Network with semantic density alignment for medical visual question answering. A novel data-driven approach for Personas validation in healthcare using self-supervised machine learning. Tentative renderings: Describing local data infrastructures that support the implementation and evaluation of national evaluation Initiatives. MedicalGLM: A Pediatric Medical Question Answering Model with a quality evaluation mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1