Hasita V Nalluri, Shantelle A Graff, Dragan Maric, John D Heiss
{"title":"Optimizing Colocalized Cell Counting Using Automated and Semiautomated Methods.","authors":"Hasita V Nalluri, Shantelle A Graff, Dragan Maric, John D Heiss","doi":"10.1007/s12021-025-09723-8","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P < 0.0001). While automated counts differed significantly from manual counts, their strong correlation (R<sup>2</sup> = 0.7764-0.9954) supports their reliability for applications where exact counts are less critical. Additionally, both techniques significantly reduced analysis time compared to manual counting. Our findings support the use of automated and semi-automated colocalization analysis methods in histological samples, particularly as sample size increases.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"25"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09723-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P < 0.0001). While automated counts differed significantly from manual counts, their strong correlation (R2 = 0.7764-0.9954) supports their reliability for applications where exact counts are less critical. Additionally, both techniques significantly reduced analysis time compared to manual counting. Our findings support the use of automated and semi-automated colocalization analysis methods in histological samples, particularly as sample size increases.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.