Internal wave energetics and interactions with mesoscale structures in the Sicily Channel area

IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Progress in Oceanography Pub Date : 2025-03-21 DOI:10.1016/j.pocean.2025.103465
Robin Rolland , Pascale Bouruet-Aubertot , Yannis Cuypers , Aurélie Albert , Julien Le Sommer
{"title":"Internal wave energetics and interactions with mesoscale structures in the Sicily Channel area","authors":"Robin Rolland ,&nbsp;Pascale Bouruet-Aubertot ,&nbsp;Yannis Cuypers ,&nbsp;Aurélie Albert ,&nbsp;Julien Le Sommer","doi":"10.1016/j.pocean.2025.103465","DOIUrl":null,"url":null,"abstract":"<div><div>The Sicily Channel plays a crucial role in the general circulation of the Mediterranean Sea. However, the internal wave dynamics is still sparsely characterized in this area which is a hotspot for internal tides. Here, we benefit from a high-resolution model of the Mediterranean Sea with and without tidal forcings to study the synoptic internal wave dynamics in the Sicily Channel area as well as their interactions with the (sub)mesoscale field. We found strong semi-diurnal internal tide generation in the Sicily Channel and the Messina Strait. Diurnal internal tides are generated in the Sicily Channel, Pelagie Islands and the Malta Plateau, and are bottom-trapped because of their sub-inertial frequency. In contrast near-inertial waves are mainly generated in winter in the Tyrrhenian Sea and the northern Ionian Sea. We show that the geometry of the Sicily Channel prevents near-inertial wave to propagate through it. Near-inertial waves are trapped in anticyclonic eddies. In summer, we show that diurnal-inertial internal waves generated by the intense thermal breeze near coastal areas are trapped in anticyclonic eddies with an effective inertial frequency close to the diurnal frequency even far from 30°N of latitude. Implications for turbulence and mixing are discussed. We present indirect evidence of an enhanced forward energy cascade in the presence of tidal motions. Future work will focus on the impact of tidal motions on the energy cascade using a nested non-hydrostatic numerical simulation.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"234 ","pages":"Article 103465"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661125000539","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The Sicily Channel plays a crucial role in the general circulation of the Mediterranean Sea. However, the internal wave dynamics is still sparsely characterized in this area which is a hotspot for internal tides. Here, we benefit from a high-resolution model of the Mediterranean Sea with and without tidal forcings to study the synoptic internal wave dynamics in the Sicily Channel area as well as their interactions with the (sub)mesoscale field. We found strong semi-diurnal internal tide generation in the Sicily Channel and the Messina Strait. Diurnal internal tides are generated in the Sicily Channel, Pelagie Islands and the Malta Plateau, and are bottom-trapped because of their sub-inertial frequency. In contrast near-inertial waves are mainly generated in winter in the Tyrrhenian Sea and the northern Ionian Sea. We show that the geometry of the Sicily Channel prevents near-inertial wave to propagate through it. Near-inertial waves are trapped in anticyclonic eddies. In summer, we show that diurnal-inertial internal waves generated by the intense thermal breeze near coastal areas are trapped in anticyclonic eddies with an effective inertial frequency close to the diurnal frequency even far from 30°N of latitude. Implications for turbulence and mixing are discussed. We present indirect evidence of an enhanced forward energy cascade in the presence of tidal motions. Future work will focus on the impact of tidal motions on the energy cascade using a nested non-hydrostatic numerical simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Oceanography
Progress in Oceanography 地学-海洋学
CiteScore
7.20
自引率
4.90%
发文量
138
审稿时长
3 months
期刊介绍: Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.
期刊最新文献
Ocean mixed layer depth 2000–2020: Estimation assessment and long-term trends Internal wave energetics and interactions with mesoscale structures in the Sicily Channel area The Arctic Oscillation controls interannual transport and fate of particulate organic carbon on the Eurasian Arctic Shelf Surface CO2 partial pressure and air–sea CO2 flux on the China side of the South Yellow Sea based on multiple-year underway measurements during 2005–2011 and comparison with results for 2011–2018 What makes a marine heatwave forecast useable, useful and used?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1