Starch-Based scaffold produced by FDM 3D printing technique as Innovative and biosustainable wound dressing

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-03-20 DOI:10.1016/j.ejpb.2025.114698
Franco Dominici , Anna Imbriano , Debora Puglia , Cinzia Pagano , Francesca Luzi , Aurora Rafanelli , Alessandro Di Michele , Francesco Bonacci , Maria Rachele Ceccarini , Sara Primavilla , Andrea Valiani , Leonardo Tensi , Carmen Laura Pérez Gutierrez , Raquel De Melo Barbosa , César Viseras , Maurizio Ricci , Luana Perioli
{"title":"Starch-Based scaffold produced by FDM 3D printing technique as Innovative and biosustainable wound dressing","authors":"Franco Dominici ,&nbsp;Anna Imbriano ,&nbsp;Debora Puglia ,&nbsp;Cinzia Pagano ,&nbsp;Francesca Luzi ,&nbsp;Aurora Rafanelli ,&nbsp;Alessandro Di Michele ,&nbsp;Francesco Bonacci ,&nbsp;Maria Rachele Ceccarini ,&nbsp;Sara Primavilla ,&nbsp;Andrea Valiani ,&nbsp;Leonardo Tensi ,&nbsp;Carmen Laura Pérez Gutierrez ,&nbsp;Raquel De Melo Barbosa ,&nbsp;César Viseras ,&nbsp;Maurizio Ricci ,&nbsp;Luana Perioli","doi":"10.1016/j.ejpb.2025.114698","DOIUrl":null,"url":null,"abstract":"<div><div>Starch is a safe biopolymer, whose use for the production of scaffolds intended for deep wounds treatment is limited, due to its low mechanical and thermal properties. For this reason, until now, it has been used in low amounts and/or in combination with other biopolymers. The aim of the study was to produce thermoplastic filaments (TPS) with high starch content, useful for scaffolds production by Fusion Deposition Modelling 3D printing technique. TPS was obtained by hot melt extrusion from a mixture of starch (70 % w/w) and glycerol (30 % w/w) combined to cationic clay montmorillonite, citric acid and magnesium stearate to improve strength and processability. The prepared scaffold was characterized and compared to other two scaffolds, where the effect of the addition of polycaprolactone (PCL) or methylsulphonylmethane (MSM) (as thermostable model drug) to the blend was evaluated. The mechanical properties were investigated by Brillouin Light Scattering. In vitro studies highlighted that the scaffolds are: i) able to absorb simulated exudates (reaching a hydration of 35 % in 7 days); ii) safe on keratinocytes (viability &gt; 70 %) stimulating their growth; iii) able to inhibit <em>S. pyogenes</em> growth.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"210 ","pages":"Article 114698"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093964112500075X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Starch is a safe biopolymer, whose use for the production of scaffolds intended for deep wounds treatment is limited, due to its low mechanical and thermal properties. For this reason, until now, it has been used in low amounts and/or in combination with other biopolymers. The aim of the study was to produce thermoplastic filaments (TPS) with high starch content, useful for scaffolds production by Fusion Deposition Modelling 3D printing technique. TPS was obtained by hot melt extrusion from a mixture of starch (70 % w/w) and glycerol (30 % w/w) combined to cationic clay montmorillonite, citric acid and magnesium stearate to improve strength and processability. The prepared scaffold was characterized and compared to other two scaffolds, where the effect of the addition of polycaprolactone (PCL) or methylsulphonylmethane (MSM) (as thermostable model drug) to the blend was evaluated. The mechanical properties were investigated by Brillouin Light Scattering. In vitro studies highlighted that the scaffolds are: i) able to absorb simulated exudates (reaching a hydration of 35 % in 7 days); ii) safe on keratinocytes (viability > 70 %) stimulating their growth; iii) able to inhibit S. pyogenes growth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Vaginal formulation development: A strategy based on aptamer-guided liposome for human papillomavirus-induced lesions Controlled release of deferiprone using iron-responsive nanoparticles integrated with dissolving microneedle for novel alternative treatments of β-thalassemia major A modern strategy for digital real-time release testing in continuous tablet manufacturing. Self-dispersible eutectic mixtures with fenofibrate and ibuprofen: Processability and API particle size. Starch-Based scaffold produced by FDM 3D printing technique as Innovative and biosustainable wound dressing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1