{"title":"Magnetic Texture Enabled Electrical Control of Dzyaloshinskii-Moriya Interaction in a Weyl Semimetal.","authors":"Yuriy G Semenov, Ki Wook Kim","doi":"10.1088/1361-648X/adc4a9","DOIUrl":null,"url":null,"abstract":"<p><p>Purely electrical control of the Dzyaloshinskii-Moriya interaction (DMI) without any external magnetic field is explored in a magnetic Weyl semimetal (WSM). The underlying mechanism for the DMI in the WSM is the recently identified asymmetrical indirect spin-spin interaction compatible with the inversion symmetry of the structure. While the necessary imbalance in the fermion population of opposite chirality is normally achieved with non-orthogonal external electric and magnetic fields (i.e., the axial anomaly), it is found that the intrinsic axial magnetic field characteristic to an inhomogeneous magnetic texture can play the role of the magnetic field. When applied to the magnetic domain walls as specific examples, our theoretical analysis clearly illustrates that the resulting DMI is pinned by and can in turn significantly affect the wall textures. As the appearance and strength of the DMI can be solely controlled by the applied electric field, this mechanism enables electrical modulation of magnetic domains including their excitation in the WSMs. Numerical calculations highlight significant advantages of the WSM over the conventional magnetic materials in spintronic applications such as the racetrack memory.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc4a9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Purely electrical control of the Dzyaloshinskii-Moriya interaction (DMI) without any external magnetic field is explored in a magnetic Weyl semimetal (WSM). The underlying mechanism for the DMI in the WSM is the recently identified asymmetrical indirect spin-spin interaction compatible with the inversion symmetry of the structure. While the necessary imbalance in the fermion population of opposite chirality is normally achieved with non-orthogonal external electric and magnetic fields (i.e., the axial anomaly), it is found that the intrinsic axial magnetic field characteristic to an inhomogeneous magnetic texture can play the role of the magnetic field. When applied to the magnetic domain walls as specific examples, our theoretical analysis clearly illustrates that the resulting DMI is pinned by and can in turn significantly affect the wall textures. As the appearance and strength of the DMI can be solely controlled by the applied electric field, this mechanism enables electrical modulation of magnetic domains including their excitation in the WSMs. Numerical calculations highlight significant advantages of the WSM over the conventional magnetic materials in spintronic applications such as the racetrack memory.
.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.