Hybrid fruit bee optimization algorithm-based deep convolution neural network for brain tumour classification using MRI images.

IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2025-03-28 DOI:10.1080/0954898X.2025.2476079
Aynun Jarria S P, Boyed Wesley A
{"title":"Hybrid fruit bee optimization algorithm-based deep convolution neural network for brain tumour classification using MRI images.","authors":"Aynun Jarria S P, Boyed Wesley A","doi":"10.1080/0954898X.2025.2476079","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate classification of brain tumour disease is an important function in diagnosing cancer disease. Several deep learning (DL) methods have been used to identify and categorize the tumour illness. Nevertheless, the better categorized result was not consistently obtained by the traditional DL procedures. Therefore, a superior answer to this problem is offered by the optimized DL approaches. Here, the brain tumour categorization (BTC) is done using the devised Hybrid Fruit Bee Optimization based Deep Convolution Neural Network (HFBO-based DCNN). Here, the noise in the image is removed through pre-processing using a Gaussian filter. Next, the feature extraction process is done using the SegNet and this helps to extract the relevant data from the input image. Then, the feature selection is done with the help of the HFBO algorithm. Additionally, the brain tumour classification is done by the Deep CNN, and the established HFBO algorithm is used to train the weight. The devised model is analysed using the testing accuracy, sensitivity, and specificity and produced the values of 0.926, 0.926, and 0.931, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2476079","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate classification of brain tumour disease is an important function in diagnosing cancer disease. Several deep learning (DL) methods have been used to identify and categorize the tumour illness. Nevertheless, the better categorized result was not consistently obtained by the traditional DL procedures. Therefore, a superior answer to this problem is offered by the optimized DL approaches. Here, the brain tumour categorization (BTC) is done using the devised Hybrid Fruit Bee Optimization based Deep Convolution Neural Network (HFBO-based DCNN). Here, the noise in the image is removed through pre-processing using a Gaussian filter. Next, the feature extraction process is done using the SegNet and this helps to extract the relevant data from the input image. Then, the feature selection is done with the help of the HFBO algorithm. Additionally, the brain tumour classification is done by the Deep CNN, and the established HFBO algorithm is used to train the weight. The devised model is analysed using the testing accuracy, sensitivity, and specificity and produced the values of 0.926, 0.926, and 0.931, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于杂交蜜蜂优化算法的深度卷积神经网络在脑肿瘤MRI图像分类中的应用。
脑肿瘤疾病的准确分类是诊断肿瘤疾病的重要功能。几种深度学习(DL)方法已被用于识别和分类肿瘤疾病。然而,传统的深度学习方法并不能得到更好的分类结果。因此,优化的深度学习方法提供了一个更好的答案。在这里,脑肿瘤分类(BTC)是使用设计的基于混合水果蜜蜂优化的深度卷积神经网络(HFBO-based DCNN)完成的。在这里,图像中的噪声通过使用高斯滤波器的预处理被去除。接下来,使用SegNet完成特征提取过程,这有助于从输入图像中提取相关数据。然后,利用HFBO算法进行特征选择。此外,脑肿瘤分类由Deep CNN完成,并使用已建立的HFBO算法来训练权值。对设计的模型进行检测精度、灵敏度和特异性分析,结果分别为0.926、0.926和0.931。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
ContrAttNet: Contribution and attention approach to multivariate time-series data imputation. Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features. A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection. EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud. Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1