Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2020-10-01 DOI:10.1016/j.apsusc.2020.146522
Xiang Sun, Jingnan Zheng, Yijing Gao, Chenglong Qiu, Yilong Yan, Zihao Yao, Shengwei Deng, Jianguo Wang
{"title":"Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials","authors":"Xiang Sun,&nbsp;Jingnan Zheng,&nbsp;Yijing Gao,&nbsp;Chenglong Qiu,&nbsp;Yilong Yan,&nbsp;Zihao Yao,&nbsp;Shengwei Deng,&nbsp;Jianguo Wang","doi":"10.1016/j.apsusc.2020.146522","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) models combined with density functional theory (DFT) calculations are employed to screen and design hydrogen evolution reaction (HER) catalysts from various bare and single-atom doped MBenes materials. The values of Gibbs free energy of hydrogen adsorption (ΔG<sub>H*</sub>) are accurately predicted via support vector algorithm only by using simply structural and elemental features. With the analysis of combined descriptors and the feature importance, the Bader charge transfer of surface metal is a key factor to influence HER activity of MBenes. Co/Ni<sub>2</sub>B<sub>2</sub>, Pt/Ni<sub>2</sub>B<sub>2</sub>, Co<sub>2</sub>B<sub>2</sub>, Os/Co<sub>2</sub>B<sub>2</sub> and Mn/Co<sub>2</sub>B<sub>2</sub> are screened from 271 MBenes and MXenes as active catalysts, with the near-zero ΔG<sub>H*</sub> of 0.089, −0.082, −0.13, −0.087 and −0.044 eV, respectively. Finally, stable Co<sub>2</sub>B<sub>2</sub> and Mn/Co<sub>2</sub>B<sub>2</sub> are considered as the excellent HER catalysts due to |ΔG<sub>H*</sub>| &lt; 0.15 eV over a wide range of hydrogen coverages (<em>θ</em> from 1/9 to 5/9). The present work suggests that ML models are competitive tools in accelerating the screening of efficient HER catalysts.</p></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"526 ","pages":"Article 146522"},"PeriodicalIF":6.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.apsusc.2020.146522","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433220312794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 33

Abstract

Machine learning (ML) models combined with density functional theory (DFT) calculations are employed to screen and design hydrogen evolution reaction (HER) catalysts from various bare and single-atom doped MBenes materials. The values of Gibbs free energy of hydrogen adsorption (ΔGH*) are accurately predicted via support vector algorithm only by using simply structural and elemental features. With the analysis of combined descriptors and the feature importance, the Bader charge transfer of surface metal is a key factor to influence HER activity of MBenes. Co/Ni2B2, Pt/Ni2B2, Co2B2, Os/Co2B2 and Mn/Co2B2 are screened from 271 MBenes and MXenes as active catalysts, with the near-zero ΔGH* of 0.089, −0.082, −0.13, −0.087 and −0.044 eV, respectively. Finally, stable Co2B2 and Mn/Co2B2 are considered as the excellent HER catalysts due to |ΔGH*| < 0.15 eV over a wide range of hydrogen coverages (θ from 1/9 to 5/9). The present work suggests that ML models are competitive tools in accelerating the screening of efficient HER catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用机器学习(ML)模型结合密度泛函理论(DFT)计算筛选和设计各种裸和单原子掺杂MBenes材料的析氢反应(HER)催化剂。通过支持向量算法,仅利用简单的结构和元素特征就能准确地预测氢吸附的吉布斯自由能(ΔGH*)。通过对组合描述符和特征重要性的分析,表面金属的贝德电荷转移是影响MBenes HER活性的关键因素。从271种MBenes和MXenes中筛选出Co/Ni2B2、Pt/Ni2B2、Co2B2、Os/Co2B2和Mn/Co2B2作为活性催化剂,其ΔGH*接近于零,分别为0.089、- 0.082、- 0.13、- 0.087和- 0.044 eV。最后,由于|ΔGH*| <0.15 eV在很大范围内的氢覆盖(θ从1/9到5/9)。目前的工作表明,ML模型是加速筛选高效HER催化剂的有竞争力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Books Received 2002
IF 1.5 1区 哲学SynthesePub Date : 2003-08-31 DOI: 10.1023/A:1021244326161
Steve, T. Kuhn, K. Ansell
2002: Books Received
IF 0 MLN bulletinPub Date : 2003-02-14 DOI: 10.1353/mln.2003.0001
R. Macksey, D. Deluna, Heather Dubnick, B. Earle, William Egginton, G. Fisch, Oleg Gelikman, Rodolphe Gasché, S. Geroulanos, Josh Lukin, Anne Mairesse, Frank E. Moorer, R. Nägele, Beryl Schlossman, H. Sussman, L. Tønder
Books Received 2002
IF 0 Journal of Protein ChemistryPub Date : 2003-08-01 DOI: 10.1076/enst.84.4.396.17387
R. Mitchell
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Tuning the performance of Thin-Film nanocomposite forward osmosis membrane using ordered nanoporous silica (LUS-1) with different functional groups Self-standing photo-assisted NiCo2O4/Cu2O electrode with boosted energy storage performance by an ultra-simple approach (FeNi)x(SiO2)1-x nano-granular film modified carbon foam for broad-band microwave absorption Photoanode/electrolyte interface modification in solar PEC cells sensitized with Cd0.8Zn0.2S quantum dots for efficient dye degradation Corrigendum to “Facilitated fluorination and etching of 2D materials” [Appl. Surf. Sci. 645 (2024) 158857]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1