Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2022-05-01 DOI:10.1016/j.jcis.2022.01.044
Haiyan Wang , Luyao Chen , Lei Tan , Xien Liu , Yonghong Wen , Wanguo Hou , Tianrong Zhan
{"title":"Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting","authors":"Haiyan Wang ,&nbsp;Luyao Chen ,&nbsp;Lei Tan ,&nbsp;Xien Liu ,&nbsp;Yonghong Wen ,&nbsp;Wanguo Hou ,&nbsp;Tianrong Zhan","doi":"10.1016/j.jcis.2022.01.044","DOIUrl":null,"url":null,"abstract":"<div><p>Developing high-efficiency and earth-abundant electrocatalysts for electrochemical seawater-splitting is of great significance but remains a grand challenge due to the presence of high-concentration chloride. This work presents the synthesis of a three-dimensional core–shell nanostructure with an amorphous and crystalline NiFe-layered double hydroxide (NiFe-LDH) layer on sulfur-modified nickel molybdate nanorods supported by porous Ni foam (S-NiMoO<sub>4</sub>@NiFe-LDH/NF) through hydrothermal and electrodeposition. Benefiting from high intrinsic activity, plentiful active sites, and accelerated electron transfer, S-NiMoO<sub>4</sub>@NiFe-LDH/NF displays an outstanding bifunctional catalytic activity toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both simulated alkaline seawater and natural seawater electrolytes. To reach a current density of 100 mA cm<sup>−2</sup>, this catalyst only requires overpotentials of 273 and 315 mV for OER and 170 and 220 mV for HER in 1 M KOH + 0.5 M NaCl freshwater and 1 M KOH + seawater electrolytes, respectively. Using S-NiMoO<sub>4</sub>@NiFe-LDH as both anode and cathode, the electrolyzer shows superb overall seawater-splitting activity, and respectively needs low voltages of 1.68 and 1.73 V to achieve a current density of 100 mA cm<sup>−2</sup> in simulated alkaline seawater and alkaline natural seawater electrolytes with good Cl<sup>−</sup> resistance and satisfactory durability. The electrolyzer outperforms the benchmark IrO<sub>2</sub>||Pt/C pair and many other reported bifunctional catalysts and exhibits great potential for realistic seawater electrolysis.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"613 ","pages":"Pages 349-358"},"PeriodicalIF":9.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979722000467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 29

Abstract

Developing high-efficiency and earth-abundant electrocatalysts for electrochemical seawater-splitting is of great significance but remains a grand challenge due to the presence of high-concentration chloride. This work presents the synthesis of a three-dimensional core–shell nanostructure with an amorphous and crystalline NiFe-layered double hydroxide (NiFe-LDH) layer on sulfur-modified nickel molybdate nanorods supported by porous Ni foam (S-NiMoO4@NiFe-LDH/NF) through hydrothermal and electrodeposition. Benefiting from high intrinsic activity, plentiful active sites, and accelerated electron transfer, S-NiMoO4@NiFe-LDH/NF displays an outstanding bifunctional catalytic activity toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both simulated alkaline seawater and natural seawater electrolytes. To reach a current density of 100 mA cm−2, this catalyst only requires overpotentials of 273 and 315 mV for OER and 170 and 220 mV for HER in 1 M KOH + 0.5 M NaCl freshwater and 1 M KOH + seawater electrolytes, respectively. Using S-NiMoO4@NiFe-LDH as both anode and cathode, the electrolyzer shows superb overall seawater-splitting activity, and respectively needs low voltages of 1.68 and 1.73 V to achieve a current density of 100 mA cm−2 in simulated alkaline seawater and alkaline natural seawater electrolytes with good Cl resistance and satisfactory durability. The electrolyzer outperforms the benchmark IrO2||Pt/C pair and many other reported bifunctional catalysts and exhibits great potential for realistic seawater electrolysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫修饰钼酸镍纳米棒上电沉积nife层双氢氧化物层的高效海水裂解
开发高效、富土的电化学海水分解电催化剂具有重要意义,但由于存在高浓度的氯化物,仍然是一个巨大的挑战。本文通过水热和电沉积的方法,在多孔镍泡沫(S-NiMoO4@NiFe-LDH/NF)支撑的硫修饰钼酸镍纳米棒上,合成了具有非晶和结晶nife层状双氢氧化物(NiFe-LDH)层的三维核壳纳米结构。S-NiMoO4@NiFe-LDH/NF具有高的本征活性、丰富的活性位点和加速的电子转移等特点,在模拟碱性海水和天然海水电解质中对析氧反应(OER)和析氢反应(HER)均表现出优异的双功能催化活性。电流密度达到100马  厘米−2,这个催化剂只需要273年和315年的过电压 mV OER和170年和220年 mV的她1 M KOH + 0.5 M氯化钠淡水和1 M KOH + 海水电解质,分别。以S-NiMoO4@NiFe-LDH为阳极和阴极的电解槽具有良好的整体海水分解活性,在模拟碱性海水和天然碱性海水电解质中分别需要1.68和1.73 V的低电压才能达到100 mA cm−2的电流密度,具有良好的耐Cl−性能和良好的耐久性。该电解槽优于基准IrO2||Pt/C对和许多其他报道的双功能催化剂,在实际海水电解中表现出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient carbon dioxide conversion by nickel ferrite-based catalysts derived from metallurgical electroplating sludge collaborating with low-temperature plasma. Enhancement of the urea oxidation reaction by constructing hierarchical CoFe-PBA@S/NiFe-LDH nanoboxes with strengthened built-in electric fields. The theory guides the doping of rare earth elements in the bulk phase of LiNi0.6Co0.2Mn0.2O2 to reach the theoretical limit of energy density. Design of a Dual-Phase TiN-WN electrochemical sensor for H2S detection. Green preparation of nitrogen vacancies enriched g-C3N4 for efficient photocatalytic reduction of CO2 and Cr(VI).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1