Claudia E Rübe, Caroline Bäumert, Nadine Schuler, Anna Isermann, Zoé Schmal, Matthias Glanemann, Carl Mann, Harry Scherthan
{"title":"Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis.","authors":"Claudia E Rübe, Caroline Bäumert, Nadine Schuler, Anna Isermann, Zoé Schmal, Matthias Glanemann, Carl Mann, Harry Scherthan","doi":"10.1038/s41514-021-00060-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is an irreversible growth arrest that occurs as a result of damaging stimuli, including DNA damage and/or telomere shortening. Here, we investigate histone variant H2A.J as a new biomarker to detect senescent cells during human skin aging. Skin biopsies from healthy volunteers of different ages (18-90 years) were analyzed for H2A.J expression and other parameters involved in triggering and/or maintaining cellular senescence. In the epidermis, the proportions of H2A.J-expressing keratinocytes increased from ≈20% in young to ≈60% in aged skin. Inverse correlations between Ki67- and H2A.J staining in germinative layers may reflect that H2A.J-expressing cells having lost their capacity to divide. As cellular senescence is triggered by DNA-damage signals, persistent 53BP1-foci, telomere lengths, and telomere-associated damage foci were analyzed in epidermal keratinocytes. Only slight age-related telomere attrition and few persistent nuclear 53BP1-foci, occasionally colocalizing with telomeres, suggest that unprotected telomeres are not a significant cause of senescence during skin aging. Quantification of integrin-α6+ basal cells suggests that the number and function of stem/progenitor cells decreased during aging and their altered proliferation capacities resulted in diminished tissue renewal with epidermal thinning. Collectively, our findings suggest that H2A.J is a sensitive marker of epidermal aging in human skin.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"7"},"PeriodicalIF":8.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-021-00060-z","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-021-00060-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 23
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of damaging stimuli, including DNA damage and/or telomere shortening. Here, we investigate histone variant H2A.J as a new biomarker to detect senescent cells during human skin aging. Skin biopsies from healthy volunteers of different ages (18-90 years) were analyzed for H2A.J expression and other parameters involved in triggering and/or maintaining cellular senescence. In the epidermis, the proportions of H2A.J-expressing keratinocytes increased from ≈20% in young to ≈60% in aged skin. Inverse correlations between Ki67- and H2A.J staining in germinative layers may reflect that H2A.J-expressing cells having lost their capacity to divide. As cellular senescence is triggered by DNA-damage signals, persistent 53BP1-foci, telomere lengths, and telomere-associated damage foci were analyzed in epidermal keratinocytes. Only slight age-related telomere attrition and few persistent nuclear 53BP1-foci, occasionally colocalizing with telomeres, suggest that unprotected telomeres are not a significant cause of senescence during skin aging. Quantification of integrin-α6+ basal cells suggests that the number and function of stem/progenitor cells decreased during aging and their altered proliferation capacities resulted in diminished tissue renewal with epidermal thinning. Collectively, our findings suggest that H2A.J is a sensitive marker of epidermal aging in human skin.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.