{"title":"Optical bottle microresonators","authors":"M. Sumetsky","doi":"10.1016/j.pquantelec.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>The optical microresonators reviewed in this paper are called bottle microresonators because their profile often resembles an elongated spheroid or a microscopic bottle. These resonators<span><span> are commonly fabricated from an optical fiber<span> by variation of its radius. Generally, variation of the bottle microresonator (BMR) radius along the fiber axis can be quite complex presenting, e.g., a series of coupled BMRs positioned along the fiber. Similar to optical spherical and toroidal microresonators, BMRs support whispering gallery modes (WGMs) which are localized inside the resonator due to the effect of total internal reflection. The elongation of BMRs along the fiber axis enables their several important properties and applications not possible to realize with other optical microresonators. The paper starts with the review of the BMR theory, which includes their spectral properties, slow WGM propagation along BMRs, theory of Surface </span></span>Nanoscale<span> Axial Photonics (SNAP) BMRs, theory of resonant transmission of light through BMR microresonators coupled to transverse </span></span></span>waveguides (microfibers), theory of nonstationary WGMs in BMRs, and theory of nonlinear BMRs. Next, the fabrication methods of BMRs including melting of optical fibers, fiber annealing in SNAP technology, rolling of semiconductor bilayers, solidifying of a UV-curable adhesive, and others are reviewed. Finally, the applications of BMRs which either have been demonstrated or feasible in the nearest future are considered. These applications include miniature BMR delay lines, BMR lasers, nonlinear BMRs, optomechanical BMRs, BMR for quantum processing, and BMR sensors.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"64 ","pages":"Pages 1-30"},"PeriodicalIF":7.4000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.04.001","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672719300072","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 36
Abstract
The optical microresonators reviewed in this paper are called bottle microresonators because their profile often resembles an elongated spheroid or a microscopic bottle. These resonators are commonly fabricated from an optical fiber by variation of its radius. Generally, variation of the bottle microresonator (BMR) radius along the fiber axis can be quite complex presenting, e.g., a series of coupled BMRs positioned along the fiber. Similar to optical spherical and toroidal microresonators, BMRs support whispering gallery modes (WGMs) which are localized inside the resonator due to the effect of total internal reflection. The elongation of BMRs along the fiber axis enables their several important properties and applications not possible to realize with other optical microresonators. The paper starts with the review of the BMR theory, which includes their spectral properties, slow WGM propagation along BMRs, theory of Surface Nanoscale Axial Photonics (SNAP) BMRs, theory of resonant transmission of light through BMR microresonators coupled to transverse waveguides (microfibers), theory of nonstationary WGMs in BMRs, and theory of nonlinear BMRs. Next, the fabrication methods of BMRs including melting of optical fibers, fiber annealing in SNAP technology, rolling of semiconductor bilayers, solidifying of a UV-curable adhesive, and others are reviewed. Finally, the applications of BMRs which either have been demonstrated or feasible in the nearest future are considered. These applications include miniature BMR delay lines, BMR lasers, nonlinear BMRs, optomechanical BMRs, BMR for quantum processing, and BMR sensors.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.