{"title":"Generating New Space-Filling Test Instances for Continuous Black-Box Optimization","authors":"Mario A. Muñoz;Kate Smith-Miles","doi":"10.1162/evco_a_00262","DOIUrl":null,"url":null,"abstract":"<para>This article presents a method to generate diverse and challenging new test instances for continuous black-box optimization. Each instance is represented as a feature vector of exploratory landscape analysis measures. By projecting the features into a two-dimensional instance space, the location of existing test instances can be visualized, and their similarities and differences revealed. New instances are generated through genetic programming which evolves functions with controllable characteristics. Convergence to selected target points in the instance space is used to drive the evolutionary process, such that the new instances span the entire space more comprehensively. We demonstrate the method by generating two-dimensional functions to visualize its success, and ten-dimensional functions to test its scalability. We show that the method can recreate existing test functions when target points are co-located with existing functions, and can generate new functions with entirely different characteristics when target points are located in empty regions of the instance space. Moreover, we test the effectiveness of three state-of-the-art algorithms on the new set of instances. The results demonstrate that the new set is not only more diverse than a well-known benchmark set, but also more challenging for the tested algorithms. Hence, the method opens up a new avenue for developing test instances with controllable characteristics, necessary to expose the strengths and weaknesses of algorithms, and drive algorithm development.</para>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"28 3","pages":"379-404"},"PeriodicalIF":4.6000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/evco_a_00262","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9185169/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 30
Abstract
This article presents a method to generate diverse and challenging new test instances for continuous black-box optimization. Each instance is represented as a feature vector of exploratory landscape analysis measures. By projecting the features into a two-dimensional instance space, the location of existing test instances can be visualized, and their similarities and differences revealed. New instances are generated through genetic programming which evolves functions with controllable characteristics. Convergence to selected target points in the instance space is used to drive the evolutionary process, such that the new instances span the entire space more comprehensively. We demonstrate the method by generating two-dimensional functions to visualize its success, and ten-dimensional functions to test its scalability. We show that the method can recreate existing test functions when target points are co-located with existing functions, and can generate new functions with entirely different characteristics when target points are located in empty regions of the instance space. Moreover, we test the effectiveness of three state-of-the-art algorithms on the new set of instances. The results demonstrate that the new set is not only more diverse than a well-known benchmark set, but also more challenging for the tested algorithms. Hence, the method opens up a new avenue for developing test instances with controllable characteristics, necessary to expose the strengths and weaknesses of algorithms, and drive algorithm development.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.