{"title":"Global Electrical Heterogeneity: Mechanisms and Clinical Significance.","authors":"Larisa G Tereshchenko","doi":"10.22489/cinc.2018.165","DOIUrl":null,"url":null,"abstract":"<p><p>This review summarizes recent findings and discusses a clinical significance of a vectorcardiographic (VCG) Global electrical heterogeneity (GEH). GEH concept is based on the concept of the spatial ventricular gradient (SVG), which is a global measure of the dispersion of total recovery time. We quantify GEH by measuring five features of the SVG vector (SVG magnitude, direction (azimuth and elevation), a scalar value, and spatial QRS-T angle) on orthogonal XYZ ECG. In analysis of more than 20,000 adults we showed that GEH is independently associated with sudden cardiac death (SCD) after adjustment for demographics, cardiovascular disease (time-updated incident non-fatal cardiovascular events [coronary heart disease, heart failure, stroke, atrial fibrillation, use of beta-blockers], and known risk factors [cholesterol, triglycerides, physical activity index, smoking, diabetes, obesity, hypertension, anti-hypertensive medications, creatinine, alcohol intake, left ventricular ejection fraction, and time-updated ECG metrics (heart rate, QTc, QRS duration, ECG-left ventricular hypertrophy, bundle branch block or interventricular conduction delay)]. This finding suggests that GEH represents an independent electrophysiological substrate of SCD.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158901/pdf/nihms-1032510.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2018.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This review summarizes recent findings and discusses a clinical significance of a vectorcardiographic (VCG) Global electrical heterogeneity (GEH). GEH concept is based on the concept of the spatial ventricular gradient (SVG), which is a global measure of the dispersion of total recovery time. We quantify GEH by measuring five features of the SVG vector (SVG magnitude, direction (azimuth and elevation), a scalar value, and spatial QRS-T angle) on orthogonal XYZ ECG. In analysis of more than 20,000 adults we showed that GEH is independently associated with sudden cardiac death (SCD) after adjustment for demographics, cardiovascular disease (time-updated incident non-fatal cardiovascular events [coronary heart disease, heart failure, stroke, atrial fibrillation, use of beta-blockers], and known risk factors [cholesterol, triglycerides, physical activity index, smoking, diabetes, obesity, hypertension, anti-hypertensive medications, creatinine, alcohol intake, left ventricular ejection fraction, and time-updated ECG metrics (heart rate, QTc, QRS duration, ECG-left ventricular hypertrophy, bundle branch block or interventricular conduction delay)]. This finding suggests that GEH represents an independent electrophysiological substrate of SCD.