Waqar Alam, Qudrat Khan, Raja Ali Riaz, Rini Akmeliawati
{"title":"Arbitrary-order sliding mode-based robust control algorithm for the developing artificial pancreas mechanism","authors":"Waqar Alam, Qudrat Khan, Raja Ali Riaz, Rini Akmeliawati","doi":"10.1049/iet-syb.2018.5075","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In Diabetes Mellitus, the pancreas remains incapable of insulin administration that leads to hyperglycaemia, an escalated glycaemic concentration, which may stimulate many complications. To circumvent this situation, a closed-loop control strategy is much needed for the exogenous insulin infusion in diabetic patients. This closed-loop structure is often termed as an artificial pancreas that is generally established by the employment of different feedback control strategies. In this work, the authors have proposed an arbitrary-order sliding mode control approach for development of the said mechanism. The term, arbitrary, is exercised in the sense of its applicability to any <i>n</i> -order controllable canonical system. The proposed control algorithm affirms the finite-time effective stabilisation of the glucose–insulin regulatory system, at the desired level, with the alleviation of sharp fluctuations. The novelty of this work lies in the sliding manifold that incorporates indirect non-linear terms. In addition, the necessary discontinuous terms are filtered-out once before its employment to the plant, i.e. diabetic patient. The robustness, in the presence of external disturbances, i.e. meal intake is confirmed via rigorous mathematical stability analysis. In addition, the effectiveness of the proposed control strategy is ascertained by comparing the results with the standard literature.</p>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"14 6","pages":"307-313"},"PeriodicalIF":1.9000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687268/pdf/SYB2-14-307.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2018.5075","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
In Diabetes Mellitus, the pancreas remains incapable of insulin administration that leads to hyperglycaemia, an escalated glycaemic concentration, which may stimulate many complications. To circumvent this situation, a closed-loop control strategy is much needed for the exogenous insulin infusion in diabetic patients. This closed-loop structure is often termed as an artificial pancreas that is generally established by the employment of different feedback control strategies. In this work, the authors have proposed an arbitrary-order sliding mode control approach for development of the said mechanism. The term, arbitrary, is exercised in the sense of its applicability to any n -order controllable canonical system. The proposed control algorithm affirms the finite-time effective stabilisation of the glucose–insulin regulatory system, at the desired level, with the alleviation of sharp fluctuations. The novelty of this work lies in the sliding manifold that incorporates indirect non-linear terms. In addition, the necessary discontinuous terms are filtered-out once before its employment to the plant, i.e. diabetic patient. The robustness, in the presence of external disturbances, i.e. meal intake is confirmed via rigorous mathematical stability analysis. In addition, the effectiveness of the proposed control strategy is ascertained by comparing the results with the standard literature.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.