{"title":"DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation.","authors":"Haiyan Liu, Yu Zeng, Hao Li, Fuxin Wang, Jianjun Chang, Huaping Guo, Jian Zhang","doi":"10.1049/syb2.12103","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial haemorrhage (ICH) is an urgent and potentially fatal medical condition caused by brain blood vessel rupture, leading to blood accumulation in the brain tissue. Due to the pressure and damage it causes to brain tissue, ICH results in severe neurological impairment or even death. Recently, deep neural networks have been widely applied to enhance the speed and precision of ICH detection yet they are still challenged by small or subtle hemorrhages. The authors introduce DDANet, a novel haematoma segmentation model for brain CT images. Specifically, a dilated convolution pooling block is introduced in the intermediate layers of the encoder to enhance feature extraction capabilities of middle layers. Additionally, the authors incorporate a self-attention mechanism to capture global semantic information of high-level features to guide the extraction and processing of low-level features, thereby enhancing the model's understanding of the overall structure while maintaining details. DDANet also integrates residual networks, channel attention, and spatial attention mechanisms for joint optimisation, effectively mitigating the severe class imbalance problem and aiding the training process. Experiments show that DDANet outperforms current methods, achieving the Dice coefficient, Jaccard index, sensitivity, accuracy, and a specificity of 0.712, 0.601, 0.73, 0.997, and 0.998, respectively. The code is available at https://github.com/hpguo1982/DDANet.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12103","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracranial haemorrhage (ICH) is an urgent and potentially fatal medical condition caused by brain blood vessel rupture, leading to blood accumulation in the brain tissue. Due to the pressure and damage it causes to brain tissue, ICH results in severe neurological impairment or even death. Recently, deep neural networks have been widely applied to enhance the speed and precision of ICH detection yet they are still challenged by small or subtle hemorrhages. The authors introduce DDANet, a novel haematoma segmentation model for brain CT images. Specifically, a dilated convolution pooling block is introduced in the intermediate layers of the encoder to enhance feature extraction capabilities of middle layers. Additionally, the authors incorporate a self-attention mechanism to capture global semantic information of high-level features to guide the extraction and processing of low-level features, thereby enhancing the model's understanding of the overall structure while maintaining details. DDANet also integrates residual networks, channel attention, and spatial attention mechanisms for joint optimisation, effectively mitigating the severe class imbalance problem and aiding the training process. Experiments show that DDANet outperforms current methods, achieving the Dice coefficient, Jaccard index, sensitivity, accuracy, and a specificity of 0.712, 0.601, 0.73, 0.997, and 0.998, respectively. The code is available at https://github.com/hpguo1982/DDANet.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.