{"title":"Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq.","authors":"Yanyan Tao, Miaomiao Li, Cheng Liu","doi":"10.1049/syb2.12109","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a severe systemic inflammatory syndrome triggered by infection and is a leading cause of morbidity and mortality in intensive care units (ICUs). Immune dysfunction is a hallmark of sepsis. In this study, the authors investigated cell-cell communication among lymphoid-derived leucocytes using single-cell RNA sequencing (scRNA-seq) to gain a deeper understanding of the underlying mechanisms in late-stage sepsis. The authors' findings revealed that both the number and strength of cellular interactions were elevated in septic patients compared to healthy individuals, with several pathways showing significant alterations, particularly in conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Notably, pathways such as CD6-ALCAM were more activated in sepsis, potentially due to T cell suppression. This study offers new insights into the mechanisms of immunosuppression and provides potential avenues for clinical intervention in sepsis.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12109","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis is a severe systemic inflammatory syndrome triggered by infection and is a leading cause of morbidity and mortality in intensive care units (ICUs). Immune dysfunction is a hallmark of sepsis. In this study, the authors investigated cell-cell communication among lymphoid-derived leucocytes using single-cell RNA sequencing (scRNA-seq) to gain a deeper understanding of the underlying mechanisms in late-stage sepsis. The authors' findings revealed that both the number and strength of cellular interactions were elevated in septic patients compared to healthy individuals, with several pathways showing significant alterations, particularly in conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Notably, pathways such as CD6-ALCAM were more activated in sepsis, potentially due to T cell suppression. This study offers new insights into the mechanisms of immunosuppression and provides potential avenues for clinical intervention in sepsis.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.