Hongquan Peng, Haibin Zhu, Chi Wa Ao Ieong, Tao Tao, Tsung Yang Tsai, Zhi Liu
{"title":"A two-stage neural network prediction of chronic kidney disease","authors":"Hongquan Peng, Haibin Zhu, Chi Wa Ao Ieong, Tao Tao, Tsung Yang Tsai, Zhi Liu","doi":"10.1049/syb2.12031","DOIUrl":null,"url":null,"abstract":"<p>Accurate detection of chronic kidney disease (CKD) plays a pivotal role in early diagnosis and treatment. Measured glomerular filtration rate (mGFR) is considered the benchmark indicator in measuring the kidney function. However, due to the high resource cost of measuring mGFR, it is usually approximated by the estimated glomerular filtration rate, underscoring an urgent need for more precise and stable approaches. With the introduction of novel machine learning methodologies, prediction performance is shown to be significantly improved across all available data, but the performance is still limited because of the lack of models in dealing with ultra-high dimensional datasets. This study aims to provide a two-stage neural network approach for prediction of GFR and to suggest some other useful biomarkers obtained from the blood metabolites in measuring GFR. It is a composite of feature shrinkage and neural network when the number of features is much larger than the number of training samples. The results show that the proposed method outperforms the existing ones, such as convolutionneural network and direct deep neural network.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"15 5","pages":"163-171"},"PeriodicalIF":1.9000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/55/SYB2-15-163.PMC8675857.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Accurate detection of chronic kidney disease (CKD) plays a pivotal role in early diagnosis and treatment. Measured glomerular filtration rate (mGFR) is considered the benchmark indicator in measuring the kidney function. However, due to the high resource cost of measuring mGFR, it is usually approximated by the estimated glomerular filtration rate, underscoring an urgent need for more precise and stable approaches. With the introduction of novel machine learning methodologies, prediction performance is shown to be significantly improved across all available data, but the performance is still limited because of the lack of models in dealing with ultra-high dimensional datasets. This study aims to provide a two-stage neural network approach for prediction of GFR and to suggest some other useful biomarkers obtained from the blood metabolites in measuring GFR. It is a composite of feature shrinkage and neural network when the number of features is much larger than the number of training samples. The results show that the proposed method outperforms the existing ones, such as convolutionneural network and direct deep neural network.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.