Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL International Journal of Mechanics and Materials in Design Pub Date : 2023-01-30 DOI:10.1007/s10999-023-09643-y
Xiaodong Xia, Yang Liu, Yihui Pan, Zheng Zhong
{"title":"Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites","authors":"Xiaodong Xia,&nbsp;Yang Liu,&nbsp;Yihui Pan,&nbsp;Zheng Zhong","doi":"10.1007/s10999-023-09643-y","DOIUrl":null,"url":null,"abstract":"<div><p>High electromagnetic interference (EMI) shielding but relatively low cost is highly desired due to the severe electromagnetic pollution and cost restriction. However, no existing research can provide the optimal microstructure to these competing goals in nanocomposite foams. The present paper concentrates on the multi-objective optimization of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. First, a two-scale electromagnetic constitutive model of EMI shielding effectiveness (SE) and cost is established through the effective-medium approximation with tunneling and Maxwell–Wagner-Sillars polarization effects. Then, a NSGA-II-based multi-objective optimization is developed for high EMI SE and low cost with the assistance of crowding distance and elite strategy. Compared to the experimental data of graphene/PDMS nanocomposite foam, the effective EMI SE of Pareto-optimal solutions increases by 78% while maintaining the identical cost. On the contrary, the optimal cost decreases by 76% while achieving the same EMI SE. The optimal EMI SE per unit cost is demonstrated to enhance by 405% with the experiment. The significant promotion of Pareto-optimal solutions in EMI shielding performance and efficiency is ascribed to the appropriate choice of microstructural parameters based on the multi-objective optimization. This research provides accurate instructions for the multi-objective optimal design in porous graphene-reinforced nanocomposites.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 3","pages":"669 - 685"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09643-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09643-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High electromagnetic interference (EMI) shielding but relatively low cost is highly desired due to the severe electromagnetic pollution and cost restriction. However, no existing research can provide the optimal microstructure to these competing goals in nanocomposite foams. The present paper concentrates on the multi-objective optimization of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. First, a two-scale electromagnetic constitutive model of EMI shielding effectiveness (SE) and cost is established through the effective-medium approximation with tunneling and Maxwell–Wagner-Sillars polarization effects. Then, a NSGA-II-based multi-objective optimization is developed for high EMI SE and low cost with the assistance of crowding distance and elite strategy. Compared to the experimental data of graphene/PDMS nanocomposite foam, the effective EMI SE of Pareto-optimal solutions increases by 78% while maintaining the identical cost. On the contrary, the optimal cost decreases by 76% while achieving the same EMI SE. The optimal EMI SE per unit cost is demonstrated to enhance by 405% with the experiment. The significant promotion of Pareto-optimal solutions in EMI shielding performance and efficiency is ascribed to the appropriate choice of microstructural parameters based on the multi-objective optimization. This research provides accurate instructions for the multi-objective optimal design in porous graphene-reinforced nanocomposites.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔石墨烯增强纳米复合材料高效电磁干扰屏蔽的多目标优化设计
由于严重的电磁污染和成本的限制,人们迫切需要具有高的电磁干扰屏蔽性和相对较低的成本。然而,目前还没有研究能够为这些相互竞争的目标提供最佳的纳米复合泡沫结构。本文主要研究了多孔石墨烯增强纳米复合材料高效电磁干扰屏蔽的多目标优化问题。首先,通过考虑隧道效应和麦克斯韦-瓦格纳-西拉极化效应的有效介质近似,建立了电磁干扰屏蔽效能和成本的双尺度电磁本构模型;在此基础上,利用拥挤距离和精英策略,提出了一种基于nsga - ii的低成本、高干扰系数的多目标优化方法。与石墨烯/PDMS纳米复合泡沫的实验数据相比,在保持相同成本的情况下,pareto最优方案的有效EMI SE提高了78%。相反,在获得相同EMI SE的情况下,最优成本降低了76%。通过实验证明,单位成本的最优EMI SE提高了405%。帕累托最优解对电磁干扰屏蔽性能和效率的显著提升是基于多目标优化的微结构参数的合理选择。该研究为多孔石墨烯增强纳米复合材料的多目标优化设计提供了准确的指导。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
期刊最新文献
Strength and stability analysis of composite inverted conical structure Multi-objective topology optimization for materials with negative Poisson’s ratio and thermal insulation An efficient approximation algorithm for variance global sensitivity by Bayesian updating Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1