{"title":"Machine Learning-based Prediction of HBV-related Hepatocellular Carcinoma and Detection of Key Candidate Biomarkers.","authors":"Zeynep Kucukakcali, Sami Akbulut, Cemil Colak","doi":"10.4274/MMJ.galenos.2022.39049","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to classify open-access gene expression data of patients with hepatitis B virus-related hepatocellular carcinoma (HBV + HCC) and chronic HBV without HCC (HBV alone) using the XGBoost method, one of the machine learning methods, and reveal important genes that may cause HCC.</p><p><strong>Methods: </strong>This case-control study used the open-access gene expression data of patients with HBV + HCC and HBV alone. Data from 17 patients with HBV + HCC and 36 patients with HBV were included. XGBoost was constructed for the classification via 10-fold cross-validation. Accuracy, balanced accuracy, sensitivity, selectivity, positive-predictive value, and negative-predictive value performance metrics were evaluated for model performance.</p><p><strong>Results: </strong>According to the feature-selection method, 18 genes were selected, and modeling was performed with these input variables. Accuracy, balanced accuracy, sensitivity, specificity, positive-predictive value, negative-predictive value, and F1 score obtained from XGBoost model were 98.1%, 98.6%, 100%, 97.2%, 94.4%, 100%, and 97.1%, respectively. Based on the predictor importance findings acquired from XGBoost, the <i>RNF26, FLJ10233, ACBD6, RBM12, PFAS, H3C11</i>, and <i>GKP5</i> can be employed as potential biomarkers of HBV-related HCC.</p><p><strong>Conclusions: </strong>In this study, genes that may be possible biomarkers of HBV-related HCC were determined using a machine learning-based prediction approach. After the reliability of the obtained genes are clinically verified in subsequent research, therapeutic procedures can be established based on these genes, and their usefulness in clinical practice may be documented.</p>","PeriodicalId":37427,"journal":{"name":"Medeniyet medical journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/54/medj-37-255.PMC9500333.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medeniyet medical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/MMJ.galenos.2022.39049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to classify open-access gene expression data of patients with hepatitis B virus-related hepatocellular carcinoma (HBV + HCC) and chronic HBV without HCC (HBV alone) using the XGBoost method, one of the machine learning methods, and reveal important genes that may cause HCC.
Methods: This case-control study used the open-access gene expression data of patients with HBV + HCC and HBV alone. Data from 17 patients with HBV + HCC and 36 patients with HBV were included. XGBoost was constructed for the classification via 10-fold cross-validation. Accuracy, balanced accuracy, sensitivity, selectivity, positive-predictive value, and negative-predictive value performance metrics were evaluated for model performance.
Results: According to the feature-selection method, 18 genes were selected, and modeling was performed with these input variables. Accuracy, balanced accuracy, sensitivity, specificity, positive-predictive value, negative-predictive value, and F1 score obtained from XGBoost model were 98.1%, 98.6%, 100%, 97.2%, 94.4%, 100%, and 97.1%, respectively. Based on the predictor importance findings acquired from XGBoost, the RNF26, FLJ10233, ACBD6, RBM12, PFAS, H3C11, and GKP5 can be employed as potential biomarkers of HBV-related HCC.
Conclusions: In this study, genes that may be possible biomarkers of HBV-related HCC were determined using a machine learning-based prediction approach. After the reliability of the obtained genes are clinically verified in subsequent research, therapeutic procedures can be established based on these genes, and their usefulness in clinical practice may be documented.
期刊介绍:
The Medeniyet Medical Journal (Medeniyet Med J) is an open access, peer-reviewed, and scientific journal of Istanbul Medeniyet University Faculty of Medicine on various academic disciplines in medicine, which is published in English four times a year, in March, June, September, and December by a group of academics. Medeniyet Medical Journal is the continuation of Göztepe Medical Journal (ISSN: 1300-526X) which was started publishing in 1985. It changed the name as Medeniyet Medical Journal in 2015. Submission and publication are free of charge. No fees are asked from the authors for evaluation or publication process. All published articles are available online in the journal website (www.medeniyetmedicaljournal.org) without any fee. The journal publishes intradisciplinary or interdisciplinary clinical, experimental, and basic researches as well as original case reports, reviews, invited reviews, or letters to the editor, Being published since 1985, the Medeniyet Med J recognizes that the best science should lead to better lives based on the fact that the medicine should serve to the needs of society, and knowledge should transform society. The journal aims to address current issues at both national and international levels, start debates, and exert an influence on decision-makers all over the world by integrating science in everyday life. Medeniyet Med J is committed to serve the public and influence people’s lives in a positive way by making science widely accessible. Believing that the only goal is improving lives, and research has an impact on people’s lives, we select the best research papers in line with this goal.