Influence of nutrient enrichment on colonisation and photosynthetic parameters of hard substrate marine microphytobenthos.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2023-08-01 Epub Date: 2023-10-09 DOI:10.1080/08927014.2023.2261852
Baptiste Vivier, Caroline Faucheux-Bourlot, Francis Orvain, Léo Chasselin, Orianne Jolly, Maxime Navon, Mohamed Boutouil, Didier Goux, Jean-Claude Dauvin, Pascal Claquin
{"title":"Influence of nutrient enrichment on colonisation and photosynthetic parameters of hard substrate marine microphytobenthos.","authors":"Baptiste Vivier,&nbsp;Caroline Faucheux-Bourlot,&nbsp;Francis Orvain,&nbsp;Léo Chasselin,&nbsp;Orianne Jolly,&nbsp;Maxime Navon,&nbsp;Mohamed Boutouil,&nbsp;Didier Goux,&nbsp;Jean-Claude Dauvin,&nbsp;Pascal Claquin","doi":"10.1080/08927014.2023.2261852","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to assess the influence of nutrient enrichment on the development of microalgal biofilm on concrete and PVC cubes. Three mesocosms were utilized to create a nutrient gradient over a period of 28 days. Various parameters including biomass, photosynthetic activity, microtopography, and extracellular polymeric substances (EPS) were measured. Imaging PAM techniques were employed to obtain surface-wide data. Results revealed that nutrient availability had no significant impact on Chl a biomass and the maximum quantum efficiency of PSII (<math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math>/<math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math>). The photosynthetic capacity and efficiency were minimally affected by nutrient availability. Interestingly, the relationship between microphytobenthic (MPB) biomass and photosynthesis and surface rugosity exhibited distinct patterns. Negative reliefs showed a strong correlation with <math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math>/<math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow><mo>,</mo></math> while no clear pattern emerged for biomass on rough concrete structures. Overall, our findings demonstrate that under conditions of heightened eutrophication, biofilm photosynthesis thrives in the fissures and crevasses of colonized structures regardless of nutrient levels. This investigation provides valuable insights into the interplay between nutrient availability and surface rugosity.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 7","pages":"730-747"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2261852","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to assess the influence of nutrient enrichment on the development of microalgal biofilm on concrete and PVC cubes. Three mesocosms were utilized to create a nutrient gradient over a period of 28 days. Various parameters including biomass, photosynthetic activity, microtopography, and extracellular polymeric substances (EPS) were measured. Imaging PAM techniques were employed to obtain surface-wide data. Results revealed that nutrient availability had no significant impact on Chl a biomass and the maximum quantum efficiency of PSII (Fv/Fm). The photosynthetic capacity and efficiency were minimally affected by nutrient availability. Interestingly, the relationship between microphytobenthic (MPB) biomass and photosynthesis and surface rugosity exhibited distinct patterns. Negative reliefs showed a strong correlation with Fv/Fm, while no clear pattern emerged for biomass on rough concrete structures. Overall, our findings demonstrate that under conditions of heightened eutrophication, biofilm photosynthesis thrives in the fissures and crevasses of colonized structures regardless of nutrient levels. This investigation provides valuable insights into the interplay between nutrient availability and surface rugosity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
营养富集对硬基质海洋微底栖生物定殖和光合参数的影响。
本研究旨在评估营养富集对混凝土和PVC立方体上微藻生物膜形成的影响。利用三个中尺度在28年内形成营养梯度 天。测量了各种参数,包括生物量、光合活性、微观形貌和细胞外聚合物(EPS)。成像PAM技术被用于获得地表范围的数据。结果表明,养分有效性对叶绿素a生物量和PSII的最大量子效率(Fv/Fm)没有显著影响。光合能力和效率受养分有效性的影响最小。有趣的是,微底栖生物量与光合作用和表面粗糙度之间的关系表现出不同的模式。负浮雕显示出与Fv/Fm的强相关性,而粗糙混凝土结构上的生物量没有出现明确的模式。总的来说,我们的研究结果表明,在富营养化加剧的条件下,无论营养水平如何,生物膜光合作用都会在定殖结构的裂缝和决口中蓬勃发展。这项研究为养分有效性和表面粗糙度之间的相互作用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
Ozonized water as a promising strategy to remove biofilm formed by Pseudomonas spp. on polyethylene and polystyrene surfaces. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. Anti-biofilm effect of ferulic acid against Enterobacter hormaechei and Klebsiella pneumoniae: in vitro and in silico investigation. Anti-biofouling marine diterpenoids from Okinawan soft corals. Effects of epigallocatechin gallate on the development of matrix-rich Streptococcus mutans biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1