Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu
{"title":"Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.","authors":"Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu","doi":"10.1080/10255842.2023.2256946","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions <i>via</i> numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2256946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions via numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.