The Effect of Segmentation Variability in Forward ECG Simulation.

Computing in cardiology Pub Date : 2022-09-01 Epub Date: 2023-04-03 DOI:10.22489/cinc.2022.325
Beata Ondrusova, Machteld Boonstra, Jana Svehlikova, Dana Brooks, Peter van Dam, Ali Salman Rababah, Akil Narayan, Rob MacLeod, Nejib Zemzemi, Jess Tate
{"title":"The Effect of Segmentation Variability in Forward ECG Simulation.","authors":"Beata Ondrusova,&nbsp;Machteld Boonstra,&nbsp;Jana Svehlikova,&nbsp;Dana Brooks,&nbsp;Peter van Dam,&nbsp;Ali Salman Rababah,&nbsp;Akil Narayan,&nbsp;Rob MacLeod,&nbsp;Nejib Zemzemi,&nbsp;Jess Tate","doi":"10.22489/cinc.2022.325","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation of patient-specific anatomical models is one of the first steps in Electrocardiographic imaging (ECGI). However, the effect of segmentation variability on ECGI remains unexplored. In this study, we assess the effect of heart segmentation variability on ECG simulation. We generated a statistical shape model from segmentations of the same patient and generated 262 cardiac geometries to run in an ECG forward computation of body surface potentials (BSPs) using an equivalent dipole layer cardiac source model and 5 ventricular stimulation protocols. Variability between simulated BSPs for all models and protocols was assessed using Pearson's correlation coefficient (CC). Compared to the BSPs of the mean cardiac shape model, the lowest variability (average CC = 0.98 ± 0.03) was found for apical pacing whereas the highest variability (average CC = 0.90 ± 0.23) was found for right ventricular free wall pacing. Furthermore, low amplitude BSPs show a larger variation in QRS morphology compared to high amplitude signals. The results indicate that the uncertainty in cardiac shape has a significant impact on ECGI.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"49 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552847/pdf/nihms-1884572.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2022.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of patient-specific anatomical models is one of the first steps in Electrocardiographic imaging (ECGI). However, the effect of segmentation variability on ECGI remains unexplored. In this study, we assess the effect of heart segmentation variability on ECG simulation. We generated a statistical shape model from segmentations of the same patient and generated 262 cardiac geometries to run in an ECG forward computation of body surface potentials (BSPs) using an equivalent dipole layer cardiac source model and 5 ventricular stimulation protocols. Variability between simulated BSPs for all models and protocols was assessed using Pearson's correlation coefficient (CC). Compared to the BSPs of the mean cardiac shape model, the lowest variability (average CC = 0.98 ± 0.03) was found for apical pacing whereas the highest variability (average CC = 0.90 ± 0.23) was found for right ventricular free wall pacing. Furthermore, low amplitude BSPs show a larger variation in QRS morphology compared to high amplitude signals. The results indicate that the uncertainty in cardiac shape has a significant impact on ECGI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前向心电仿真中分割变异性的影响。
患者特定解剖模型的分割是心电图成像(ECGI)的第一步。然而,分割可变性对ECGI的影响仍未得到探索。在这项研究中,我们评估了心脏分割变异性对心电图模拟的影响。我们从同一患者的分割中生成了一个统计形状模型,并生成了262个心脏几何形状,以使用等效偶极层心脏源模型和5个心室刺激协议在体表电位(BSP)的ECG正向计算中运行。使用Pearson相关系数(CC)评估所有模型和方案的模拟BSP之间的变异性。与平均心脏形状模型的BSP相比,心尖起搏的变异性最低(平均CC=0.98±0.03),而右心室自由壁起搏的变异率最高(平均CC=0.090±0.23)。此外,与高振幅信号相比,低振幅BSP在QRS形态上表现出更大的变化。结果表明,心脏形状的不确定性对ECGI有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1