Mohamadreza Homayounzade, Maryam Homayounzadeh, Mohammad Hassan Khooban
{"title":"Robust positive control of tumour growth using angiogenic inhibition","authors":"Mohamadreza Homayounzade, Maryam Homayounzadeh, Mohammad Hassan Khooban","doi":"10.1049/syb2.12076","DOIUrl":null,"url":null,"abstract":"<p>In practice, many physical systems, including physiological ones, can be considered whose input can take only positive quantities. However, most of the conventional control methods do not support the positivity of the main input data to the system. Furthermore, the parameters of these systems, similar to other non-linear systems, are either not accurately identified or may change over time. Therefore, it is reasonable to design a controller that is robust against system uncertainties. A robust positive-input control method is proposed for the automatic treatment of targeted anti-angiogenic therapy implementing a recently published tumour growth model based on experiments conducted on mouse models. The backstepping (BS) approach is applied to design the positive input controller using sensory data of tumour volume as feedback. Unlike previous studies, the proposed controller only requires the measurement of tumour volume and does not require the measurement of inhibitor level. The exponential stability of the controlled system is proved mathematically using the Lyapunov theorem. As a result, the convergence rate of the tumour volume can be controlled, which is an important issue in cancer treatment. Moreover, the robustness of the system against parametric uncertainties is verified mathematically using the Lyapunov theorem. The real-time simulation results-based (OPAL-RT) and comparisons with previous studies confirm the theoretical findings and effectiveness of the proposed method.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 5","pages":"288-301"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In practice, many physical systems, including physiological ones, can be considered whose input can take only positive quantities. However, most of the conventional control methods do not support the positivity of the main input data to the system. Furthermore, the parameters of these systems, similar to other non-linear systems, are either not accurately identified or may change over time. Therefore, it is reasonable to design a controller that is robust against system uncertainties. A robust positive-input control method is proposed for the automatic treatment of targeted anti-angiogenic therapy implementing a recently published tumour growth model based on experiments conducted on mouse models. The backstepping (BS) approach is applied to design the positive input controller using sensory data of tumour volume as feedback. Unlike previous studies, the proposed controller only requires the measurement of tumour volume and does not require the measurement of inhibitor level. The exponential stability of the controlled system is proved mathematically using the Lyapunov theorem. As a result, the convergence rate of the tumour volume can be controlled, which is an important issue in cancer treatment. Moreover, the robustness of the system against parametric uncertainties is verified mathematically using the Lyapunov theorem. The real-time simulation results-based (OPAL-RT) and comparisons with previous studies confirm the theoretical findings and effectiveness of the proposed method.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.