Identifying cancer risks using spectral subset feature selection based on multi-layer perception neural network for premature treatment.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-01 Epub Date: 2023-10-04 DOI:10.1080/10255842.2023.2262662
M Ramkumar, P Shanmugaraja, V Anusuya, B Dhiyanesh
{"title":"Identifying cancer risks using spectral subset feature selection based on multi-layer perception neural network for premature treatment.","authors":"M Ramkumar, P Shanmugaraja, V Anusuya, B Dhiyanesh","doi":"10.1080/10255842.2023.2262662","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, human beings have been affected mainly by dreadful cancer diseases. Predicting cancer risk levels is a major challenge in biomedical research for feature selection and classification at the margins. To resolve this problem, we propose a Subset Clustering-Based Feature Selection using a Multi-Layer Perception Neural Network (SCFS-MLPNN). Initially, pre-processing is carried out with Intensive Mutual Disease Influence Rate (IMDIR) to identify the relational features. In addition, the Successive Disease Pattern Stimulus Rate (SDPSR) is carried out to create relative feature patterns. Based on the patterns, the features are selected and grouped into clustering. Inter-Class Sub-Space Clustering (ICSSC) is applied to split the features by class labels depending on the marginal rate. From the class labels, marginal features are obtained using spectral subset feature selection (SSFS). The selected features are then trained in a Multi-Layer Perception Neural Network (MLPNN) classifier to classify the patient features by risk. Its contribution is to exploit subset features to improve classification accuracy by clustering relational features. The proposed classifier yields higher classification accuracy than previous methods and observes cancer detection for early detection. Therefore, the proposed method achieved a risk analysis accuracy of 91.8% and an F-measure of 91.3% for early detection, which is recommended for early diagnosis.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2262662","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, human beings have been affected mainly by dreadful cancer diseases. Predicting cancer risk levels is a major challenge in biomedical research for feature selection and classification at the margins. To resolve this problem, we propose a Subset Clustering-Based Feature Selection using a Multi-Layer Perception Neural Network (SCFS-MLPNN). Initially, pre-processing is carried out with Intensive Mutual Disease Influence Rate (IMDIR) to identify the relational features. In addition, the Successive Disease Pattern Stimulus Rate (SDPSR) is carried out to create relative feature patterns. Based on the patterns, the features are selected and grouped into clustering. Inter-Class Sub-Space Clustering (ICSSC) is applied to split the features by class labels depending on the marginal rate. From the class labels, marginal features are obtained using spectral subset feature selection (SSFS). The selected features are then trained in a Multi-Layer Perception Neural Network (MLPNN) classifier to classify the patient features by risk. Its contribution is to exploit subset features to improve classification accuracy by clustering relational features. The proposed classifier yields higher classification accuracy than previous methods and observes cancer detection for early detection. Therefore, the proposed method achieved a risk analysis accuracy of 91.8% and an F-measure of 91.3% for early detection, which is recommended for early diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多层感知神经网络的谱子集特征选择用于早期治疗的癌症风险识别。
最近,人类主要受到可怕的癌症疾病的影响。预测癌症风险水平是生物医学研究中边缘特征选择和分类的主要挑战。为了解决这个问题,我们提出了一种使用多层感知神经网络(SCFS-MLPNN)的基于子集聚类的特征选择。最初,使用密集相互疾病影响率(IMDIR)进行预处理,以识别关系特征。此外,还进行了连续疾病模式刺激率(SDPSR)来创建相对特征模式。根据模式,选择特征并将其分组到集群中。类间子空间聚类(ICSSC)用于根据边际速率通过类标签来划分特征。从类别标签中,使用谱子集特征选择(SSFS)来获得边缘特征。然后在多层感知神经网络(MLPNN)分类器中对所选特征进行训练,以按风险对患者特征进行分类。它的贡献是利用子集特征,通过对关系特征进行聚类来提高分类精度。所提出的分类器比以前的方法产生更高的分类精度,并观察癌症的早期检测。因此,所提出的方法在早期检测中实现了91.8%的风险分析准确率和91.3%的F-测量,这被推荐用于早期诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1