Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering.

Lin Yao, Peter Brown, Mahsa Shoaran
{"title":"Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering.","authors":"Lin Yao,&nbsp;Peter Brown,&nbsp;Mahsa Shoaran","doi":"10.1109/BIOCAS.2018.8584721","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F<sub>(1,15)</sub>=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2018.8584721","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2018.8584721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F(1,15)=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习和卡尔曼滤波检测帕金森病患者的静息震颤。
适应性深部脑刺激(aDBS)是一种新兴的方法,可以减轻传统开环刺激对运动障碍的副作用并提高疗效。然而,当前的自适应DBS技术主要基于单特征阈值,排除了用于精确控制运动症状的刺激的优化递送。在这里,我们建议使用机器学习方法从12名帕金森病患者的丘脑底核(STN)记录的局部场电位(LFP)中检测静息状态震颤。我们比较了最先进的分类器和基于LFP的生物标记物在震颤检测中的性能,表明高频振荡和Hjorth参数具有较高的判别性能。此外,在特征空间中使用卡尔曼滤波,我们表明震颤检测性能显著提高(F(1,15)=32.16,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale 3-D Capacitance Tomography with a CMOS Sensor Array. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface. Estimating Intrinsic Manifold Dimensionality to Classify Task-Related Information in Human and Non-Human Primate Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1