Ying Zhao, Mayank Chadha, Nicholas Olsen, Elissa Yeates, Josh Turner, Guga Gugaratshan, Gu Qian, Michael D. Todd, Zhen Hu
{"title":"Machine learning-enabled calibration of river routing model parameters","authors":"Ying Zhao, Mayank Chadha, Nicholas Olsen, Elissa Yeates, Josh Turner, Guga Gugaratshan, Gu Qian, Michael D. Todd, Zhen Hu","doi":"10.2166/hydro.2023.030","DOIUrl":null,"url":null,"abstract":"\n Streamflow prediction of rivers is crucial for making decisions in watershed and inland waterways management. The US Army Corps of Engineers (USACE) uses a river routing model called RAPID to predict water discharges for thousands of rivers in the network for watershed and inland waterways management. However, the calibration of hydrological streamflow parameters in RAPID is time-consuming and requires streamflow measurement data which may not be available for some ungauged locations. In this study, we aim to address the calibration aspect of the RAPID model by exploring machine learning (ML)-based methods to facilitate efficient calibration of hydrological model parameters without the need for streamflow measurements. Various ML models are constructed and compared to learn a relationship between hydrological model parameters and various river parameters, such as length, slope, catchment size, percentage of vegetation, and elevation contours. The studied ML models include Gaussian process regression, Gaussian mixture copula, Random Forest, and XGBoost. This study has shown that ML models that are carefully constructed by considering causal and sensitive input features offer a potential approach that not only obtains calibrated hydrological model parameters with reasonable accuracy but also bypasses the current calibration challenges.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"43 20","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Streamflow prediction of rivers is crucial for making decisions in watershed and inland waterways management. The US Army Corps of Engineers (USACE) uses a river routing model called RAPID to predict water discharges for thousands of rivers in the network for watershed and inland waterways management. However, the calibration of hydrological streamflow parameters in RAPID is time-consuming and requires streamflow measurement data which may not be available for some ungauged locations. In this study, we aim to address the calibration aspect of the RAPID model by exploring machine learning (ML)-based methods to facilitate efficient calibration of hydrological model parameters without the need for streamflow measurements. Various ML models are constructed and compared to learn a relationship between hydrological model parameters and various river parameters, such as length, slope, catchment size, percentage of vegetation, and elevation contours. The studied ML models include Gaussian process regression, Gaussian mixture copula, Random Forest, and XGBoost. This study has shown that ML models that are carefully constructed by considering causal and sensitive input features offer a potential approach that not only obtains calibrated hydrological model parameters with reasonable accuracy but also bypasses the current calibration challenges.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.