{"title":"Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0323","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2})\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where a , b > 0 a,b\\gt 0 , V V is a positive radial potential function, and f ( u ) f\\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla tu{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta \\left(tu)={t}^{3}b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \\left\\{{b}_{n}\\right\\}\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\\left({{\\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0323","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2})\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where a , b > 0 a,b\gt 0 , V V is a positive radial potential function, and f ( u ) f\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla tu{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta \left(tu)={t}^{3}b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \left\{{b}_{n}\right\}\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\left({{\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.