首页 > 最新文献

Advances in Nonlinear Analysis最新文献

英文 中文
Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations Schrödinger-Poisson-Slater方程正解的存在性与浓度行为
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0293
Yiqing Li, Binlin Zhang, Xiumei Han
Abstract This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: − ε 2 Δ u + V ( x ) u + ε − α ( I α ∗ ∣ u ∣ 2 ) u = λ ∣ u ∣ p − 1 u in R N , -{varepsilon }^{2}Delta u+Vleft(x)u+{varepsilon }^{-alpha }left({I}_{alpha }ast | u{| }^{2})u=lambda | u{| }^{p-1}uhspace{1em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}{{mathbb{R}}}^{N}, where ε , λ > 0 varepsilon ,lambda gt 0 are parameters, N ⩾ 2 Ngeqslant 2 , ( α + 6 ) / ( α + 2 ) < p < 2 ∗ − 1 left(alpha +6)hspace{0.1em}text{/}hspace{0.1em}left(alpha +2)lt plt {2}^{ast }-1 , I α {I}_{alpha } is the Riesz potential with 0 < α < N 0lt alpha lt N , and V ∈ C ( R N , R ) Vin {mathcal{C}}left({{mathbb{R}}}^{N},{mathbb{R}}) . By using variational methods, we prove that there is a positive ground state solution for the aforementioned equation concentrating at a global minimum of V V in the semi-classical limit, and then we found that this solution satisfies the property of exponential decay. Finally, the multiplicity and concentration behavior of positive solutions for the aforementioned problem is investigated by the Ljusternik-Schnirelmann theory. Our article improves and extends some existing results in several directions.
摘要本文旨在研究以下Schrödinger-Poisson-Slater型方程:−ε2Δu+V(x)u+ε−α({I}_{alpha|ast|u{|}^{2})u=λ^{p-1}uhspace{1em}space{0.1em}text{in}sspace{0.1em}sace{0.33em}{{mathbb{R}}}}^{N},其中ε、λ>0varepsilon、λ>0是参数,N⩾2 Ngeqslant 2,(α+6)/Iα{I}_{alpha}是Riesz势,其中0<α
{"title":"Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations","authors":"Yiqing Li, Binlin Zhang, Xiumei Han","doi":"10.1515/anona-2022-0293","DOIUrl":"https://doi.org/10.1515/anona-2022-0293","url":null,"abstract":"Abstract This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: − ε 2 Δ u + V ( x ) u + ε − α ( I α ∗ ∣ u ∣ 2 ) u = λ ∣ u ∣ p − 1 u in R N , -{varepsilon }^{2}Delta u+Vleft(x)u+{varepsilon }^{-alpha }left({I}_{alpha }ast | u{| }^{2})u=lambda | u{| }^{p-1}uhspace{1em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}{{mathbb{R}}}^{N}, where ε , λ > 0 varepsilon ,lambda gt 0 are parameters, N ⩾ 2 Ngeqslant 2 , ( α + 6 ) / ( α + 2 ) < p < 2 ∗ − 1 left(alpha +6)hspace{0.1em}text{/}hspace{0.1em}left(alpha +2)lt plt {2}^{ast }-1 , I α {I}_{alpha } is the Riesz potential with 0 < α < N 0lt alpha lt N , and V ∈ C ( R N , R ) Vin {mathcal{C}}left({{mathbb{R}}}^{N},{mathbb{R}}) . By using variational methods, we prove that there is a positive ground state solution for the aforementioned equation concentrating at a global minimum of V V in the semi-classical limit, and then we found that this solution satisfies the property of exponential decay. Finally, the multiplicity and concentration behavior of positive solutions for the aforementioned problem is investigated by the Ljusternik-Schnirelmann theory. Our article improves and extends some existing results in several directions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42968190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Higher integrability for anisotropic parabolic systems of p-Laplace type p-Laplace型各向异性抛物型系统的高可积性
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0308
Leon Mons
Abstract In this article, we consider anisotropic parabolic systems of p p -Laplace type. The model case is the parabolic p i {p}_{i} -Laplace system u t − ∑ i = 1 n ∂ ∂ x i ( ∣ D i u ∣ p i − 2 D i u ) = 0 {u}_{t}-mathop{sum }limits_{i=1}^{n}frac{partial }{partial {x}_{i}}({| {D}_{i}u| }^{{p}_{i}-2}{D}_{i}u)=0 with exponents p i ≥ 2 {p}_{i}ge 2 . Under the assumption that the exponents are not too far apart, i.e., the difference p max − p min {p}_{max }-{p}_{min } is sufficiently small, we establish a higher integrability result for weak solutions. This extends a result, which was only known for the elliptic setting, to the parabolic setting.
摘要本文考虑p p -拉普拉斯型各向异性抛物系统。模型情况是抛物型p i {p_i}-拉普拉斯系统u t−∑i=1 n∂∂x i(∣D iu∣p i−2D iu)=0 {u_t}- {}{}mathop{sum }limits _i=1{^}n{}frac{partial }{partial {x}_{i}} ({|{ D_iu}| ^{p_i}- }2d_iu{{)}={0,指数p i≥2 p_i }}{}{}{}{}ge 2。在指数差不太远的假设下,即p max−p min p_ {}{max -p_ }{}{min的差足够}小,我们建立了弱解的高可积性结果。这将只在椭圆设置下才知道的结果扩展到抛物线设置下。
{"title":"Higher integrability for anisotropic parabolic systems of p-Laplace type","authors":"Leon Mons","doi":"10.1515/anona-2022-0308","DOIUrl":"https://doi.org/10.1515/anona-2022-0308","url":null,"abstract":"Abstract In this article, we consider anisotropic parabolic systems of p p -Laplace type. The model case is the parabolic p i {p}_{i} -Laplace system u t − ∑ i = 1 n ∂ ∂ x i ( ∣ D i u ∣ p i − 2 D i u ) = 0 {u}_{t}-mathop{sum }limits_{i=1}^{n}frac{partial }{partial {x}_{i}}({| {D}_{i}u| }^{{p}_{i}-2}{D}_{i}u)=0 with exponents p i ≥ 2 {p}_{i}ge 2 . Under the assumption that the exponents are not too far apart, i.e., the difference p max − p min {p}_{max }-{p}_{min } is sufficiently small, we establish a higher integrability result for weak solutions. This extends a result, which was only known for the elliptic setting, to the parabolic setting.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45131011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dirichlet problems involving the Hardy-Leray operators with multiple polars 多极点Hardy-Leray算子的Dirichlet问题
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0320
Huyuan Chen, Xiaowei Chen
Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{mathcal{ {mathcal L} }}}_{V}:= -Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 Vleft(x)={sum }_{i=1}^{m}frac{{mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {mu }_{i}ge -frac{{left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{mathcal{A}}}_{m}=left{{A}_{i}:i=1,ldots ,mright} in R N {{mathbb{R}}}^{N} ( N ≥ 2 Nge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {left{{mu }_{i}right}}_{i=1}^{m} and the locations of polars { A i } left{{A}_{i}right} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω Omega be a bounded domain containing A m {{mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{mathcal{ {mathcal L} }}}_{V}u=lambda uhspace{1.0em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1.0em}{rm{on}}hspace{0.33em}partial Omega , and the positivity of the principle eigenvalue depends on the strength μ i {mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , left(E)hspace{1.0em}hspace{1.0em}{{mathcal{ {mathcal L} }}}_{V}u=nu hspace{1em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1em}{rm{on}}hspace{0.33em}partial Omega , when ν nu belongs to L p ( Ω ) {L}^{p}left(Omega ) , with p > 2 N N + 2 pgt frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{infty } estimate when p > N 2 pgt frac{N}{2} . When the principle eigenvalue is positive and ν nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ A m ) nu in {{mathcal{C}}}^{gamma }left(bar{Omega }setminus {{mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) left(E) .
摘要本文的目的是研究涉及Hardy-Leray算子的Dirichlet问题的定性性质ℒ V−Δ+V-{A}_{i} |}^{2}},其中μi≥−(N−2)2 4{mu}_{{A}_{i} :i=1,ldots,mright}在R N{mathbb{R}}^{N}中(N≥2Nge2)。由于平方反比势对于拉普拉斯算子是关键的,因此系数{μi}i=1m{lang1033{mu}_{i}right}}_{{A}_{i} 在零Dirichlet边界条件下相关Poisson问题解的性质中起着重要作用。设ΩOmega是一个包含a m{mathcal{a}}_{m}的有界域。首先,我们获得了增加的狄利克雷特征值:ℒ V u=λu,单位为Ω,u=0,在¦ΒΩ上,{mathcal{math L}}_{V}u=lambda uhspace{1.0em}{rm{in}}space{0.33em}Omega,space{1.0em}u=0hspace{1.0em}{rm{on}}space{0.33em}partial Omega,并且主特征值的正性取决于强度μi{mu}_{i}和polar的设置。当谱不包含原点时,我们考虑泊松问题(E)的弱解ℒ V u=¦Α,u=¦ΒΩ上的0,left(E)hspace{1.0em}space{1.0em}{mathcal{L}}_{V}u=nuhspace{1em}{rm{in}}space{0.33em}Omega,space{1.0em}u=0hspace{1em}{rm{on}}space{0.33em}partialOmega,当Γnu属于Lp(Ω){L}^{p}left(Omega)时,在变分框架中p>2N+2p}{{N+2},并且当p>N2}{。当主特征值为正,且Γnu为Radon测度时,我们建立了一个加权分布框架来证明问题(E)left(E)弱解的存在性。此外,通过这个加权分布框架,我们可以得到一个关于问题(E)left(E)存在孤立奇异解的尖锐假设,即{mathcal{C}}}^{gamma}left(bar{Omega}setminus{math cal{a}}}}_{m})中的Γ∈Cγ(Ωam)nu。
{"title":"Dirichlet problems involving the Hardy-Leray operators with multiple polars","authors":"Huyuan Chen, Xiaowei Chen","doi":"10.1515/anona-2022-0320","DOIUrl":"https://doi.org/10.1515/anona-2022-0320","url":null,"abstract":"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{mathcal{ {mathcal L} }}}_{V}:= -Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 Vleft(x)={sum }_{i=1}^{m}frac{{mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {mu }_{i}ge -frac{{left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{mathcal{A}}}_{m}=left{{A}_{i}:i=1,ldots ,mright} in R N {{mathbb{R}}}^{N} ( N ≥ 2 Nge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {left{{mu }_{i}right}}_{i=1}^{m} and the locations of polars { A i } left{{A}_{i}right} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω Omega be a bounded domain containing A m {{mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{mathcal{ {mathcal L} }}}_{V}u=lambda uhspace{1.0em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1.0em}{rm{on}}hspace{0.33em}partial Omega , and the positivity of the principle eigenvalue depends on the strength μ i {mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , left(E)hspace{1.0em}hspace{1.0em}{{mathcal{ {mathcal L} }}}_{V}u=nu hspace{1em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1em}{rm{on}}hspace{0.33em}partial Omega , when ν nu belongs to L p ( Ω ) {L}^{p}left(Omega ) , with p > 2 N N + 2 pgt frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{infty } estimate when p > N 2 pgt frac{N}{2} . When the principle eigenvalue is positive and ν nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ A m ) nu in {{mathcal{C}}}^{gamma }left(bar{Omega }setminus {{mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) left(E) .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic and quasi-periodic solutions of a four-dimensional singular differential system describing the motion of vortices 描述涡旋运动的四维奇异微分系统的周期解和拟周期解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0287
Zaitao Liang, Shengjun Li, Xin Li
Abstract In this article, we consider a four-dimensional singular differential system that can describe the dynamics of configurations bearing a small number of vortices in atomic Bose-Einstein condensates. On the basis of the topological degree theory and some analysis methods, we prove that such a system has two distinct families of periodic solutions and two distinct families of quasi-periodic solutions. Some results in the literature are generalized and improved.
在这篇文章中,我们考虑了一个四维奇异微分系统,它可以描述原子玻色-爱因斯坦凝聚体中带有少量漩涡的构型的动力学。利用拓扑度理论和一些分析方法,证明了该系统具有两个不同族的周期解和两个不同族的拟周期解。对文献中的一些结果进行了推广和改进。
{"title":"Periodic and quasi-periodic solutions of a four-dimensional singular differential system describing the motion of vortices","authors":"Zaitao Liang, Shengjun Li, Xin Li","doi":"10.1515/anona-2022-0287","DOIUrl":"https://doi.org/10.1515/anona-2022-0287","url":null,"abstract":"Abstract In this article, we consider a four-dimensional singular differential system that can describe the dynamics of configurations bearing a small number of vortices in atomic Bose-Einstein condensates. On the basis of the topological degree theory and some analysis methods, we prove that such a system has two distinct families of periodic solutions and two distinct families of quasi-periodic solutions. Some results in the literature are generalized and improved.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47145885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Noncoercive parabolic obstacle problems 非强制抛物型障碍问题
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0322
F. Farroni, L. Greco, G. Moscariello, Gabriella Zecca
Abstract We prove an existence result for obstacle problems related to convection-diffusion parabolic equations with singular coefficients in the convective term. Our operator is not coercive, the obstacle function is time-dependent irregular, and the coefficients in the lower-order term belong to a borderline mixed Lebesgue-Marcinkiewicz space.
摘要证明了一类对流项系数为奇异的对流扩散抛物方程障碍问题的存在性。我们的算子是非强制的,障碍函数是随时间变化的不规则的,低阶项的系数属于边界混合Lebesgue-Marcinkiewicz空间。
{"title":"Noncoercive parabolic obstacle problems","authors":"F. Farroni, L. Greco, G. Moscariello, Gabriella Zecca","doi":"10.1515/anona-2022-0322","DOIUrl":"https://doi.org/10.1515/anona-2022-0322","url":null,"abstract":"Abstract We prove an existence result for obstacle problems related to convection-diffusion parabolic equations with singular coefficients in the convective term. Our operator is not coercive, the obstacle function is time-dependent irregular, and the coefficients in the lower-order term belong to a borderline mixed Lebesgue-Marcinkiewicz space.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48861225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic solutions to a class of distributed delay differential equations via variational methods 一类分布时滞微分方程的变分周期解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0305
Huafeng Xiao, Zhiming Guo
Abstract In this article, we study the existence of periodic solutions to a class of distributed delay differential equations. We transform the search for periodic solutions with the special symmetry of a delay differential equation to the problem of finding periodic solutions of an associated Hamiltonian system. Using the critical point theory and the pseudo-index theory, we obtain some sufficient conditions for the multiplicity of periodic solutions. This is the first time that critical point theory has been used to study the existence of periodic solutions to distributed delay differential equations.
摘要本文研究了一类分布时滞微分方程周期解的存在性。我们把寻找具有时滞微分方程特殊对称性的周期解的问题转化为寻找相关哈密顿系统的周期解问题。利用临界点理论和伪指数理论,我们得到了周期解多重性的一些充分条件。这是临界点理论首次用于研究分布时滞微分方程周期解的存在性。
{"title":"Periodic solutions to a class of distributed delay differential equations via variational methods","authors":"Huafeng Xiao, Zhiming Guo","doi":"10.1515/anona-2022-0305","DOIUrl":"https://doi.org/10.1515/anona-2022-0305","url":null,"abstract":"Abstract In this article, we study the existence of periodic solutions to a class of distributed delay differential equations. We transform the search for periodic solutions with the special symmetry of a delay differential equation to the problem of finding periodic solutions of an associated Hamiltonian system. Using the critical point theory and the pseudo-index theory, we obtain some sufficient conditions for the multiplicity of periodic solutions. This is the first time that critical point theory has been used to study the existence of periodic solutions to distributed delay differential equations.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42369970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supersolutions to nonautonomous Choquard equations in general domains 一般定义域非自治Choquard方程的超解
1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2023-0107
Asadollah Aghajani, Juha Kinnunen
Abstract We consider the nonlocal quasilinear elliptic problem: <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>H</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width="1.0em" /> <m:mstyle> <m:mspace width="0.1em" /> <m:mtext>in</m:mtext> <m:mspace width="0.1em" /> </m:mstyle> <m:mspace width="0.33em" /> <m:mi mathvariant="normal">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:math> -{Delta }_{m}uleft(x)=Hleft(x){(left({I}_{alpha }* left(Qfleft(u)))left(x))}^{beta }gleft(uleft(x))hspace{1.0em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}Omega , where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi mathvariant="normal">Ω</m:mi> </m:math> Omega is a smooth domain in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{mathbb{R}}}^{N} , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>β</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> beta ge 0 , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> </m:math> {I}_{alpha } , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mi>N</m:mi> </m:math> 0lt alpha lt N , stands for the Riesz potential, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f,g:left[0,a)to left[0,infty ) , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:ma
考虑非局部拟线性椭圆型问题:−Δm u (x) = H (x ) ( ( 我α* (Q f (u ) ) ) ( x ) ) βg (u (x ) ) 在Ω-{三角洲}_ {m} u 左H (x) = 左(x){(左({我}_{α}* 左(Qf 左(u))) 左(x))} ^{β}g 离开(u 左(x)) 水平间距{1.0 em} 水平间距{0.1 em}{在} 文本水平间距{0.1 em} 水平间距{0.33 em} ω,Ωω是一个平滑的域在R N {{ mathbb {R}}} ^ {N},β≥0 β通用电气0,我α{我}_{α},0 & lt;α& lt;N 0lt alpha lt N,表示Riesz势,f,g: [0,a)→[0,∞)f,g:left[0,a)到left[0,infty), 0 <A≤∞0lt A le inty,为单调非降函数,具有f (s), g (s) >0 fleft(s),gleft(s)gt 0 for s >0 sgt 0,和H,Q: Ω→R H,Q:Omega 到{mathbb{R}}是非负可测函数。我们给出了正弱超解的明确定量点估计。作为一个应用,我们得到了有关非线性特征值问题在有界域上的极值参数的界,这些非线性特征值问题包括eu, (1+u) p {e}^{u},{left(1+u)}^{p}和(1-u) -p {left(1-u)}^{p}, p >1 pgt 1。我们还讨论了无界域上的liouville型结果。
{"title":"Supersolutions to nonautonomous Choquard equations in general domains","authors":"Asadollah Aghajani, Juha Kinnunen","doi":"10.1515/anona-2023-0107","DOIUrl":"https://doi.org/10.1515/anona-2023-0107","url":null,"abstract":"Abstract We consider the nonlocal quasilinear elliptic problem: &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;m&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;*&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;Q&lt;/m:mi&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;β&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mspace width=\"1.0em\" /&gt; &lt;m:mstyle&gt; &lt;m:mspace width=\"0.1em\" /&gt; &lt;m:mtext&gt;in&lt;/m:mtext&gt; &lt;m:mspace width=\"0.1em\" /&gt; &lt;/m:mstyle&gt; &lt;m:mspace width=\"0.33em\" /&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; -{Delta }_{m}uleft(x)=Hleft(x){(left({I}_{alpha }* left(Qfleft(u)))left(x))}^{beta }gleft(uleft(x))hspace{1.0em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}Omega , where &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;/m:math&gt; Omega is a smooth domain in &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; {{mathbb{R}}}^{N} , &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;β&lt;/m:mi&gt; &lt;m:mo&gt;≥&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:math&gt; beta ge 0 , &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:math&gt; {I}_{alpha } , &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:math&gt; 0lt alpha lt N , stands for the Riesz potential, &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mo&gt;:&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;[&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;a&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;→&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;[&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;∞&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; f,g:left[0,a)to left[0,infty ) , &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi&gt;a&lt;/m:mi&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mi&gt;∞&lt;/m:mi&gt; &lt;/m:ma","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136305773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and concentration of solutions to Kirchhoff-type equations in ℝ2 with steep potential well vanishing at infinity and exponential critical nonlinearities 具有陡峭势井在无穷远处消失和指数临界非线性的kirchhoff型方程解的存在性和集中性
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0317
Jian Zhang, Xue Bao, Jianjun Zhang
Abstract We are concerned with the following Kirchhoff-type equation with exponential critical nonlinearities − a + b ∫ R 2 ∣ ∇ u ∣ 2 d x Δ u + ( h ( x ) + μ V ( x ) ) u = K ( x ) f ( u ) in R 2 , -left(a+bmathop{int }limits_{{{mathbb{R}}}^{2}}| nabla u{| }^{2}{rm{d}}xright)Delta u+left(hleft(x)+mu Vleft(x))u=Kleft(x)fleft(u)hspace{1em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{2}, where a , b , μ > 0 a,b,mu gt 0 , the potential V V has a bounded set of zero points and decays at infinity as ∣ x ∣ − γ | x{| }^{-gamma } with γ ∈ ( 0 , 2 ) gamma in left(0,2) , the weight K K has finite singular points and may have exponential growth at infinity. By using the truncation technique and working in some weighted Sobolev space, we obtain the existence of a mountain pass solution for μ > 0 mu gt 0 large and the concentration behavior of solutions as μ → + ∞ mu to +infty .
摘要:我们关注以下具有指数临界非线性的kirchhoff型方程- a+b∫r2∣∇u∣2d x Δ u+ (h (x)+ μ V (x))u=K (x)f (u)在r2中,- left (a+b mathop{int }limits _ {{{mathbb{R}}} ^{2}}| nabla u{|} ^{2x}{rm{d}}right) Delta u+ left (h left (x)+ mu V left (x))u=K left (x)f left (u)^hspace{1em}{rm{in}}hspace{0.33em}{{mathbb{R}}}2{,}其中a,b, μ > 0 a,b,mugt 0,势V V有一个有界的零点集合,在无穷远处衰减为∣x∣−γ | x| ^{-}{gamma,其中γ}∈(0,2)gammainleft(0,2),权K K有有限奇点,在无穷远处可以呈指数增长。利用截断技术,在一些权重Sobolev空间中,我们得到了μ > 0 mugt 0大的山口解的存在性和解的集中行为为μ→+∞muto + infty。
{"title":"Existence and concentration of solutions to Kirchhoff-type equations in ℝ2 with steep potential well vanishing at infinity and exponential critical nonlinearities","authors":"Jian Zhang, Xue Bao, Jianjun Zhang","doi":"10.1515/anona-2022-0317","DOIUrl":"https://doi.org/10.1515/anona-2022-0317","url":null,"abstract":"Abstract We are concerned with the following Kirchhoff-type equation with exponential critical nonlinearities − a + b ∫ R 2 ∣ ∇ u ∣ 2 d x Δ u + ( h ( x ) + μ V ( x ) ) u = K ( x ) f ( u ) in R 2 , -left(a+bmathop{int }limits_{{{mathbb{R}}}^{2}}| nabla u{| }^{2}{rm{d}}xright)Delta u+left(hleft(x)+mu Vleft(x))u=Kleft(x)fleft(u)hspace{1em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{2}, where a , b , μ > 0 a,b,mu gt 0 , the potential V V has a bounded set of zero points and decays at infinity as ∣ x ∣ − γ | x{| }^{-gamma } with γ ∈ ( 0 , 2 ) gamma in left(0,2) , the weight K K has finite singular points and may have exponential growth at infinity. By using the truncation technique and working in some weighted Sobolev space, we obtain the existence of a mountain pass solution for μ > 0 mu gt 0 large and the concentration behavior of solutions as μ → + ∞ mu to +infty .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67260729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient estimates for nonlinear elliptic equations involving the Witten Laplacian on smooth metric measure spaces and implications 光滑度量空间上涉及Witten laplace的非线性椭圆方程的梯度估计及其意义
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0288
A. Taheri, V. Vahidifar
Abstract This article presents new local and global gradient estimates of Li-Yau type for positive solutions to a class of nonlinear elliptic equations on smooth metric measure spaces involving the Witten Laplacian. The estimates are derived under natural lower bounds on the associated Bakry-Émery Ricci curvature tensor and find utility in proving fairly general Harnack inequalities and Liouville-type theorems to name a few. The results here unify, extend and improve various existing results in the literature for special nonlinearities already of huge interest and applications. Some consequences are presented and discussed.
摘要本文给出了光滑度量空间上涉及Witten拉普拉斯算子的一类非线性椭圆方程正解的Li-Yau型的新的局部和全局梯度估计。这些估计是在相关的Bakry-Émery Ricci曲率张量的自然下界下推导出来的,并在证明相当一般的哈纳克不等式和liouville型定理等方面找到了实用价值。本文的结果统一、扩展和改进了文献中已有的各种具有巨大兴趣和应用的特殊非线性的结果。提出并讨论了一些后果。
{"title":"Gradient estimates for nonlinear elliptic equations involving the Witten Laplacian on smooth metric measure spaces and implications","authors":"A. Taheri, V. Vahidifar","doi":"10.1515/anona-2022-0288","DOIUrl":"https://doi.org/10.1515/anona-2022-0288","url":null,"abstract":"Abstract This article presents new local and global gradient estimates of Li-Yau type for positive solutions to a class of nonlinear elliptic equations on smooth metric measure spaces involving the Witten Laplacian. The estimates are derived under natural lower bounds on the associated Bakry-Émery Ricci curvature tensor and find utility in proving fairly general Harnack inequalities and Liouville-type theorems to name a few. The results here unify, extend and improve various existing results in the literature for special nonlinearities already of huge interest and applications. Some consequences are presented and discussed.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41408547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition 一类具有局部超线性条件的拟线性系统解的存在性和多重性
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0289
Cuiling Liu, Xingyong Zhang
Abstract We investigate the existence and multiplicity of weak solutions for a nonlinear Kirchhoff type quasilinear elliptic system on the whole space R N {{mathbb{R}}}^{N} . We assume that the nonlinear term satisfies the locally super- ( m 1 , m 2 ) left({m}_{1},{m}_{2}) condition, that is, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {mathrm{lim}}_{| left(u,v)| to +infty }frac{Fleft(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+infty for a.e. x ∈ G xin G , where G G is a domain in R N {{mathbb{R}}}^{N} , which is weaker than the well-known Ambrosseti-Rabinowitz condition and the naturally global restriction, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {mathrm{lim}}_{| left(u,v)| to +infty }frac{Fleft(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+infty for a.e. x ∈ R N xin {{mathbb{R}}}^{N} . We obtain that the system has at least one weak solution by using the classical mountain pass theorem. To a certain extent, our theorems extend the results of Tang et al. [Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dynam. Differ. Equ. 31 (2019), no. 1, 369–383]. Moreover, under the aforementioned naturally global restriction, we obtain that the system has infinitely many weak solutions of high energy by using the symmetric mountain pass theorem, which is different from those results of Wang et al. [Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3792–3814] even if we consider the system on the bounded domain with Dirichlet boundary condition.
摘要我们研究了一个非线性Kirchhoff型拟线性椭圆系统在整个空间RN上弱解的存在性和多重性。我们假设非线性项满足局部超(m1,m2)左({m}_{1} ,{m}_{2} )条件,即limŞ(u,v)Ş→ + ∞ F(x,u,v^{{m}_{1} }+|v{|}^{{m}_{2} {}=+infty对于a.e.x∈G中的G,其中G G是R N{mathbb{R}}^{N}中的一个域,它弱于众所周知的Ambrosseti-Rabinowitz条件和自然全局限制→ + ∞ F(x,u,v^{{m}_{1} }+|v{|}^{{m}_{2} {mathbb{R}}中的a.e.x∈R N x=+infty。利用经典的山口定理,我们得到系统至少有一个弱解。在一定程度上,我们的定理扩展了Tang等人的结果。[具有局部超二次条件的薛定谔方程的非平凡解,J.Dynam.Differ.Equ.31(2019),no.1369–383]。此外,在上述自然全局约束下,我们利用对称山口定理得到了该系统具有无穷多个高能弱解,这与Wang等人的结果不同。〔Orlicz-Sobolev空间中一类拟线性椭圆系统解的存在性和多重性,J。非线性科学。Appl。10(2017),no.723792–3814],即使我们考虑具有Dirichlet边界条件的有界域上的系统。
{"title":"Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition","authors":"Cuiling Liu, Xingyong Zhang","doi":"10.1515/anona-2022-0289","DOIUrl":"https://doi.org/10.1515/anona-2022-0289","url":null,"abstract":"Abstract We investigate the existence and multiplicity of weak solutions for a nonlinear Kirchhoff type quasilinear elliptic system on the whole space R N {{mathbb{R}}}^{N} . We assume that the nonlinear term satisfies the locally super- ( m 1 , m 2 ) left({m}_{1},{m}_{2}) condition, that is, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {mathrm{lim}}_{| left(u,v)| to +infty }frac{Fleft(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+infty for a.e. x ∈ G xin G , where G G is a domain in R N {{mathbb{R}}}^{N} , which is weaker than the well-known Ambrosseti-Rabinowitz condition and the naturally global restriction, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {mathrm{lim}}_{| left(u,v)| to +infty }frac{Fleft(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+infty for a.e. x ∈ R N xin {{mathbb{R}}}^{N} . We obtain that the system has at least one weak solution by using the classical mountain pass theorem. To a certain extent, our theorems extend the results of Tang et al. [Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dynam. Differ. Equ. 31 (2019), no. 1, 369–383]. Moreover, under the aforementioned naturally global restriction, we obtain that the system has infinitely many weak solutions of high energy by using the symmetric mountain pass theorem, which is different from those results of Wang et al. [Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3792–3814] even if we consider the system on the bounded domain with Dirichlet boundary condition.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41664225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Advances in Nonlinear Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1