{"title":"Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation","authors":"Binhua Feng, Da-Bin Wang, Zhi-Guo Wu","doi":"10.1515/anona-2022-0296","DOIUrl":null,"url":null,"abstract":"Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\\left({\\varepsilon }^{2}a+\\varepsilon b\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{3}}| \\nabla v{| }^{2}{\\rm{d}}x\\right)\\Delta v+V\\left(x)v=P\\left(x)f\\left(v),\\hspace{1em}x\\in {{\\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\\in {C}^{1}\\left({{\\mathbb{R}}}^{3},{\\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\\left({\\mathbb{R}},{\\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0296","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+V\left(x)v=P\left(x)f\left(v),\hspace{1em}x\in {{\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\in {C}^{1}\left({{\mathbb{R}}}^{3},{\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\left({\mathbb{R}},{\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.