A MOLLIFIER APPROACH TO THE DECONVOLUTION OF PROBABILITY DENSITIES

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2022-10-28 DOI:10.1017/s0266466622000457
P. Maréchal, L. Simar, A. Vanhems
{"title":"A MOLLIFIER APPROACH TO THE DECONVOLUTION OF PROBABILITY DENSITIES","authors":"P. Maréchal, L. Simar, A. Vanhems","doi":"10.1017/s0266466622000457","DOIUrl":null,"url":null,"abstract":"\n We use mollification to regularize the problem of deconvolution of random variables. This regularization method offers a unifying and generalizing framework in order to compare the benefits of various filter-type techniques like deconvolution kernels, Tikhonov, or spectral cutoff methods. In particular, the mollifier approach allows to relax some restrictive assumptions required for the deconvolution kernels, and has better stabilizing properties compared with spectral cutoff or Tikhonov. We show that this approach achieves optimal rates of convergence for both finitely and infinitely smoothing convolution operators under Besov and Sobolev smoothness assumptions on the unknown probability density. The qualification can be arbitrarily high depending on the choice of the mollifier function. We propose an adaptive choice of the regularization parameter using the Lepskiĭ method, and we provide simulations to compare the finite sample properties of our estimator with respect to the well-known regularization methods.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466622000457","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

We use mollification to regularize the problem of deconvolution of random variables. This regularization method offers a unifying and generalizing framework in order to compare the benefits of various filter-type techniques like deconvolution kernels, Tikhonov, or spectral cutoff methods. In particular, the mollifier approach allows to relax some restrictive assumptions required for the deconvolution kernels, and has better stabilizing properties compared with spectral cutoff or Tikhonov. We show that this approach achieves optimal rates of convergence for both finitely and infinitely smoothing convolution operators under Besov and Sobolev smoothness assumptions on the unknown probability density. The qualification can be arbitrarily high depending on the choice of the mollifier function. We propose an adaptive choice of the regularization parameter using the Lepskiĭ method, and we provide simulations to compare the finite sample properties of our estimator with respect to the well-known regularization methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率密度反褶积的一种软化方法
我们使用软化来正则化随机变量的反褶积问题。这种正则化方法提供了一个统一和推广的框架,以便比较各种滤波器类型技术的优点,如去卷积核、Tikhonov或谱截止方法。特别是,软化器方法允许放松反褶积核所需的一些限制性假设,并且与谱截止或Tikhonov相比具有更好的稳定性。我们证明,在未知概率密度的Besov和Sobolev光滑假设下,该方法对有限和无限光滑卷积算子都实现了最优收敛速度。根据软化剂功能的选择,资格可以任意高。我们使用Lepskiĭ方法提出了正则化参数的自适应选择,并提供了仿真,以将我们的估计器的有限样本特性与众所周知的正则化方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1