Discovery of novel spike/ACE2 inhibitory macrocycles using in silico reinforcement learning

L. Shapira, Shaul Lerner, Guila Assayag, A. Vardi, D. Haham, Gideon Bar, Vicky Fidelsky Kozokaro, Maayan Elias Robicsek, Immanuel Lerner, Amit Michaeli
{"title":"Discovery of novel spike/ACE2 inhibitory macrocycles using in silico reinforcement learning","authors":"L. Shapira, Shaul Lerner, Guila Assayag, A. Vardi, D. Haham, Gideon Bar, Vicky Fidelsky Kozokaro, Maayan Elias Robicsek, Immanuel Lerner, Amit Michaeli","doi":"10.3389/fddsv.2022.1085701","DOIUrl":null,"url":null,"abstract":"Introduction: The COVID-19 pandemic has cast a heavy toll in human lives and global economics. COVID-19 is caused by the SARS-CoV-2 virus, which infects cells via its spike protein binding human ACE2. Methods: To discover potential inhibitory peptidomimetic macrocycles for the spike/ACE2 complex we deployed Artificial Intelligence guided virtual screening with three distinct strategies: 1) Allosteric spike inhibitors 2) Competitive ACE2 inhibitors and 3) Competitive spike inhibitors. Screening was performed by docking macrocycles to the relevant sites, clustering and synthesizing cluster representatives. Synthesized molecules were screened for inhibition using AlphaLISA and RSV particles. Results: All three strategies yielded inhibitory peptides, but only the competitive spike inhibitors showed “hit” level activity. Discussion: These results suggest that direct inhibition of the spike RBD domain is the most attractive strategy for peptidomimetic, “head-to-tail” macrocycle drug development against the ongoing pandemic.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.1085701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: The COVID-19 pandemic has cast a heavy toll in human lives and global economics. COVID-19 is caused by the SARS-CoV-2 virus, which infects cells via its spike protein binding human ACE2. Methods: To discover potential inhibitory peptidomimetic macrocycles for the spike/ACE2 complex we deployed Artificial Intelligence guided virtual screening with three distinct strategies: 1) Allosteric spike inhibitors 2) Competitive ACE2 inhibitors and 3) Competitive spike inhibitors. Screening was performed by docking macrocycles to the relevant sites, clustering and synthesizing cluster representatives. Synthesized molecules were screened for inhibition using AlphaLISA and RSV particles. Results: All three strategies yielded inhibitory peptides, but only the competitive spike inhibitors showed “hit” level activity. Discussion: These results suggest that direct inhibition of the spike RBD domain is the most attractive strategy for peptidomimetic, “head-to-tail” macrocycle drug development against the ongoing pandemic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于计算机强化学习的新型刺突/ACE2抑制性大环的发现
导言:2019冠状病毒病大流行给人类生命和全球经济造成了重大损失。COVID-19是由SARS-CoV-2病毒引起的,该病毒通过其结合人类ACE2的刺突蛋白感染细胞。方法:为了发现潜在的抑制尖刺/ACE2复合物的拟肽大循环,我们采用人工智能引导的虚拟筛选方法,采用三种不同的策略:1)变构尖刺抑制剂;2)竞争性ACE2抑制剂;3)竞争性尖刺抑制剂。通过将大环与相关位点对接、聚类和合成聚类代表进行筛选。利用AlphaLISA和RSV颗粒对合成的分子进行抑制筛选。结果:所有三种策略都产生了抑制肽,但只有竞争性刺突抑制剂显示出“击中”水平的活性。讨论:这些结果表明,直接抑制刺突RBD结构域是针对当前大流行的拟肽“头到尾”大周期药物开发的最有吸引力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mimicking the immunosuppressive impact of fibroblasts in a 3D multicellular spheroid model Alternative therapeutics to control antimicrobial resistance: a general perspective Editorial: The boulder peptide symposium 2021 scientific update Applying artificial intelligence to accelerate and de-risk antibody discovery Editorial: Women in anti-inflammatory and immunomodulating agents: 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1