{"title":"Effect of Non-Axisymmetric Endwall Profiling on Heat Transfer and Film Cooling Effectiveness of a Transonic Rotor Blade","authors":"Jinjin Li, Xin Yan, Kun He","doi":"10.1115/gt2019-90154","DOIUrl":null,"url":null,"abstract":"\n Effects of non-axisymmetric endwall profiling on total pressure loss, heat transfer, and film cooling effectiveness of a transonic rotor blade were numerically investigated. The numerical methods, including the turbulence model and grid sensitivity, were validated with the existing experimental data. To reduce the thermal load on endwall, non-axisymmetric endwall profiling near leading edge and at pressure-side corner area was performed with a range of contour amplitudes. Heat transfer and flow fields near the profiled endwalls were analyzed and also compared with the plain endwall configuration. On the profiled endwall, three kinds of cooling holes, i.e., cylindrical holes, rounded-rectangular holes, and elliptical holes, were arranged, and film cooling effect was investigated at three blowing ratios. Results indicate that, with endwall profiling, the area-averaged Stanton number on endwall is reduced by 7.71% and total pressure loss in cascade is reduced by 11.07%. Among three kinds of cooling holes, the arrangement of the elliptical hole performs the best film cooling effect on the profiled endwall. Compared with the plain endwall, non-axisymmetric endwall with elliptical cooling holes improves film cooling coverage by 10.87%, reduces the Stanton number by 8.88%, and increases the net heat flux reduction performance by 4% at M = 0.7.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/gt2019-90154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Effects of non-axisymmetric endwall profiling on total pressure loss, heat transfer, and film cooling effectiveness of a transonic rotor blade were numerically investigated. The numerical methods, including the turbulence model and grid sensitivity, were validated with the existing experimental data. To reduce the thermal load on endwall, non-axisymmetric endwall profiling near leading edge and at pressure-side corner area was performed with a range of contour amplitudes. Heat transfer and flow fields near the profiled endwalls were analyzed and also compared with the plain endwall configuration. On the profiled endwall, three kinds of cooling holes, i.e., cylindrical holes, rounded-rectangular holes, and elliptical holes, were arranged, and film cooling effect was investigated at three blowing ratios. Results indicate that, with endwall profiling, the area-averaged Stanton number on endwall is reduced by 7.71% and total pressure loss in cascade is reduced by 11.07%. Among three kinds of cooling holes, the arrangement of the elliptical hole performs the best film cooling effect on the profiled endwall. Compared with the plain endwall, non-axisymmetric endwall with elliptical cooling holes improves film cooling coverage by 10.87%, reduces the Stanton number by 8.88%, and increases the net heat flux reduction performance by 4% at M = 0.7.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.