Short Review on srBERT: Automatic Article Classification Model for Systematic Review Using BERT

S. Choe, S. Aum, Ju Han Kim
{"title":"Short Review on srBERT: Automatic Article Classification Model for Systematic Review Using BERT","authors":"S. Choe, S. Aum, Ju Han Kim","doi":"10.53043/2347-3894.acam90025","DOIUrl":null,"url":null,"abstract":"Systematic reviews (SRs) have been recognized as the most rigorous and reliable approach to enable evidence-based medicine. However, the considerable workload required to create SRs prevents reflecting the latest knowledge. This study automated the classification of included articles by adopting the Bidirectional Encoder Representations from Transformers (BERT) algorithm. By pretraining with abstracts of articles and a generated vocabulary fine-tuned with titles of articles, the proposed srBERTmy overcomes the training data insufficiency while improving performance in both classification and relation-extraction tasks. Despite the limitation of model vulnerabilities based on training dataset quality, the results demonstrated the feasibility of automatic article classification using machine-learning (ML) approaches to support SR tasks Keywords: Systematic review, process automation, deep learning, text mining","PeriodicalId":72312,"journal":{"name":"Asian journal of complementary and alternative medicine : A-CAM","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of complementary and alternative medicine : A-CAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53043/2347-3894.acam90025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Systematic reviews (SRs) have been recognized as the most rigorous and reliable approach to enable evidence-based medicine. However, the considerable workload required to create SRs prevents reflecting the latest knowledge. This study automated the classification of included articles by adopting the Bidirectional Encoder Representations from Transformers (BERT) algorithm. By pretraining with abstracts of articles and a generated vocabulary fine-tuned with titles of articles, the proposed srBERTmy overcomes the training data insufficiency while improving performance in both classification and relation-extraction tasks. Despite the limitation of model vulnerabilities based on training dataset quality, the results demonstrated the feasibility of automatic article classification using machine-learning (ML) approaches to support SR tasks Keywords: Systematic review, process automation, deep learning, text mining
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
srBERT综述:基于BERT的系统综述文章自动分类模型
系统评价(SRs)已被认为是实现循证医学的最严格和最可靠的方法。然而,创建SRs所需的大量工作量阻碍了反映最新的知识。本研究采用双向编码器表示从变压器(BERT)算法自动分类纳入文章。通过使用文章摘要和根据文章标题进行微调的生成词汇表进行预训练,所提出的srBERTmy克服了训练数据不足的问题,同时提高了分类和关系提取任务的性能。尽管基于训练数据集质量的模型漏洞存在局限性,但结果证明了使用机器学习(ML)方法支持SR任务的自动文章分类的可行性。关键词:系统审查,过程自动化,深度学习,文本挖掘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SFI Reduces the Nucleocytoplasmic Transportation of HMGB1 by Upregulating HDAC3 in LPS-induced RAW264.7 Cells Magnesium – The Metabolic Blockbuster The Controversy: Whether Sucralose Could Increase Blood Glucose in The Body? Rare Clinical Conditions Caused by Dry Eye Bioinformatics-based Prediction of Character of Envelope Glycoprotein and Analysis of Epitopes of B- and T-cell of gp120
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1