{"title":"Magnesium – The Metabolic Blockbuster","authors":"Uwe Gröber","doi":"10.53043/2347-3894.acam11009","DOIUrl":null,"url":null,"abstract":"Magnesium is primarily found within the cell where it acts as a counter ion for the energy-rich ATP and nuclear acids. Magnesium is a cofactor in more than 600 pacemaker enzyme systems, encompassing approximately 80% of all known metabolic functions, that regulate elementary biochemical reactions in the body, including protein synthesis, muscle and nerve transmission, neuromuscular conduction, blood glucose control, and blood pressure regulation. Some magnesium-dependent enzymes are Na+/ K+-ATPase, hexokinase, creatine kinase, protein kinase, and cyclases. Magnesium is also necessary for structural function of proteins, nucleic acids, or mitochondria. It is required for DNA and RNA synthesis, reproduction, and for both aerobic and anaerobic energy production—oxidative phosphorylation and glycolysis either indirectly as a part of magnesium-ATP complex, or directly as an enzyme activator [1-3].","PeriodicalId":72312,"journal":{"name":"Asian journal of complementary and alternative medicine : A-CAM","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of complementary and alternative medicine : A-CAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53043/2347-3894.acam11009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium is primarily found within the cell where it acts as a counter ion for the energy-rich ATP and nuclear acids. Magnesium is a cofactor in more than 600 pacemaker enzyme systems, encompassing approximately 80% of all known metabolic functions, that regulate elementary biochemical reactions in the body, including protein synthesis, muscle and nerve transmission, neuromuscular conduction, blood glucose control, and blood pressure regulation. Some magnesium-dependent enzymes are Na+/ K+-ATPase, hexokinase, creatine kinase, protein kinase, and cyclases. Magnesium is also necessary for structural function of proteins, nucleic acids, or mitochondria. It is required for DNA and RNA synthesis, reproduction, and for both aerobic and anaerobic energy production—oxidative phosphorylation and glycolysis either indirectly as a part of magnesium-ATP complex, or directly as an enzyme activator [1-3].