Sumin Bae, Matthew Duff, Jun Young Hong, Jung-Kun Lee
{"title":"Optical engineering of PbS colloidal quantum dot solar cells via Fabry–Perot resonance and distributed Bragg reflectors","authors":"Sumin Bae, Matthew Duff, Jun Young Hong, Jung-Kun Lee","doi":"10.1186/s40580-023-00379-1","DOIUrl":null,"url":null,"abstract":"<div><p>A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry–Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO<sub>2</sub>-TiO<sub>2</sub> multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00379-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-023-00379-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry–Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO2-TiO2 multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.