A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2021-10-26 DOI:10.6092/ISSN.1973-2201/11635
H. Yousof, C. Chesneau, G. Hamedani, M. Ibrahim
{"title":"A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations","authors":"H. Yousof, C. Chesneau, G. Hamedani, M. Ibrahim","doi":"10.6092/ISSN.1973-2201/11635","DOIUrl":null,"url":null,"abstract":"In this work, a new discrete distribution which includes the discrete Burr-Hatke distribution is defined and studied. Relevant statistical properties are derived. The probability mass function of the new distribution can be \"right skewed\" with different shapes, bimodal and \"uniformed\". Also, the corresponding hazard rate function can be \"monotonically decreasing\", \"upside down\", \"monotonically increasing\", \"upside down increasing\", and \"upside down-constant-increasing\". A numerical analysis for the mean, variance, skewness, kurtosis and the index of dispersion is presented. The new distribution could be useful in the modeling of \"under-dispersed\" or \"overdispersed\" count data. Certain characterizations of the new distribution are presented. These characterizations are based on the conditional expectation of a certain function of the random variable and in terms of the hazard rate function. Bayesian and non-Bayesian estimation methods are considered. Numerical simulations for comparing Bayesian and non-Bayesian estimation methods are performed. The new model is applied for modeling carious teeth data and counts of cysts of kidneys data.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"81 1","pages":"135-162"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/11635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, a new discrete distribution which includes the discrete Burr-Hatke distribution is defined and studied. Relevant statistical properties are derived. The probability mass function of the new distribution can be "right skewed" with different shapes, bimodal and "uniformed". Also, the corresponding hazard rate function can be "monotonically decreasing", "upside down", "monotonically increasing", "upside down increasing", and "upside down-constant-increasing". A numerical analysis for the mean, variance, skewness, kurtosis and the index of dispersion is presented. The new distribution could be useful in the modeling of "under-dispersed" or "overdispersed" count data. Certain characterizations of the new distribution are presented. These characterizations are based on the conditional expectation of a certain function of the random variable and in terms of the hazard rate function. Bayesian and non-Bayesian estimation methods are considered. Numerical simulations for comparing Bayesian and non-Bayesian estimation methods are performed. The new model is applied for modeling carious teeth data and counts of cysts of kidneys data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的离散分布:性质、表征、实数数据建模、贝叶斯和非贝叶斯估计
本文定义并研究了一种新的离散分布,其中包括离散Burr-Hatke分布。导出了相关的统计性质。新分布的概率质量函数可以是不同形状的“右偏斜”、双峰和“均匀”分布。相应的风险率函数可以是“单调递减”、“倒挂递增”、“倒挂递增”、“倒挂递增”、“倒挂递增”。给出了均值、方差、偏度、峰度和离散度指数的数值分析。新的分布可以用于“欠分散”或“过度分散”计数数据的建模。提出了新分布的某些特征。这些特征是基于随机变量的某个函数的条件期望和风险率函数。考虑了贝叶斯和非贝叶斯估计方法。对贝叶斯估计方法和非贝叶斯估计方法进行了数值模拟比较。将该模型应用于龋齿数据和肾囊肿计数数据的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1