Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2021-10-26 DOI:10.6092/ISSN.1973-2201/12090
S. Ando
{"title":"Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables","authors":"S. Ando","doi":"10.6092/ISSN.1973-2201/12090","DOIUrl":null,"url":null,"abstract":"This study proposes a polynomial columns-parameter symmetry model for square contingency tables with the same row and column ordinal classifications. In the proposed model, the odds for all i < j that an observation will fall in row category i and column category j instead of row category j and column category i depend on only the value of column category j . The proposed model is original because many asymmetry models in square contingency tables depend on the both values of row and column category. The proposed model constantly holds when the columns-parameter symmetry model holds; but the converse does not necessarily hold. This study shows that it is necessary to satisfy the polynomial columns-marginal symmetry model, in addition to the columns-parameter symmetry model, to satisfy the proposed model. This decomposition theorem is useful for explaining why the proposed model does not hold. Moreover, this study shows the value of likelihood ratio chi-square statistic for testing the proposed model is equal to the sum of that for testing the decomposed two models.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"81 1","pages":"123-134"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/12090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a polynomial columns-parameter symmetry model for square contingency tables with the same row and column ordinal classifications. In the proposed model, the odds for all i < j that an observation will fall in row category i and column category j instead of row category j and column category i depend on only the value of column category j . The proposed model is original because many asymmetry models in square contingency tables depend on the both values of row and column category. The proposed model constantly holds when the columns-parameter symmetry model holds; but the converse does not necessarily hold. This study shows that it is necessary to satisfy the polynomial columns-marginal symmetry model, in addition to the columns-parameter symmetry model, to satisfy the proposed model. This decomposition theorem is useful for explaining why the proposed model does not hold. Moreover, this study shows the value of likelihood ratio chi-square statistic for testing the proposed model is equal to the sum of that for testing the decomposed two models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平方列联表的多项式列参数对称模型及其分解
针对具有相同行和列序分类的平方列联表,提出了一个多项式列参数对称模型。在所提出的模型中,对于所有i<j,观察将落在行类别i和列类别j而不是行类别j和列类别i中的几率仅取决于列类别j的值。所提出的模型是独创的,因为方形列联表中的许多不对称模型都依赖于行和列类别的值。当柱参数对称模型成立时,所提出的模型始终成立;但反过来不一定成立。该研究表明,除了满足柱参数对称模型外,还需要满足多项式柱边缘对称模型才能满足所提出的模型。这个分解定理有助于解释为什么所提出的模型不成立。此外,该研究表明,用于测试所提出的模型的似然比卡方统计量的值等于用于测试分解的两个模型的似然比卡方统计量值的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1