Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2021-10-26 DOI:10.6092/ISSN.1973-2201/12309
H. Rehman, N. Chandra
{"title":"Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution","authors":"H. Rehman, N. Chandra","doi":"10.6092/ISSN.1973-2201/12309","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the modelling of cumulative incidence function using improper Gompertz distribution based on middle censored competing risks survival data. Together with the unknown parameters, cumulative incidence function also estimated. In classical set up, we derive the point estimates using maximum likelihood estimator and midpoint approximation methods. The asymptotic confidence interval are obtained based on asymptotic normality properties of maximum likelihood estimator. We also derive the Bayes estimates with associated credible intervals based on informative and non-informative types of priors under two loss functions such as squared error and LINEX loss functions. A simulation study is conducted for comprehensive comparison between various estimators proposed in this paper. A real life data set is also used for illustration.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/12309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we deal with the modelling of cumulative incidence function using improper Gompertz distribution based on middle censored competing risks survival data. Together with the unknown parameters, cumulative incidence function also estimated. In classical set up, we derive the point estimates using maximum likelihood estimator and midpoint approximation methods. The asymptotic confidence interval are obtained based on asymptotic normality properties of maximum likelihood estimator. We also derive the Bayes estimates with associated credible intervals based on informative and non-informative types of priors under two loss functions such as squared error and LINEX loss functions. A simulation study is conducted for comprehensive comparison between various estimators proposed in this paper. A real life data set is also used for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不适当Gompertz分布估计中间滤波存在下的累积关联函数
本文研究了基于中截尾竞争风险生存数据的不正当Gompertz分布累积关联函数的建模问题。结合未知参数,估计了累积关联函数。在经典设置中,我们使用极大似然估计和中点逼近方法推导点估计。根据极大似然估计的渐近正态性,得到渐近置信区间。我们还在平方误差和LINEX损失函数两种损失函数下,基于信息和非信息类型的先验,推导出具有相关可信区间的贝叶斯估计。通过仿真研究,对本文提出的各种估计方法进行了综合比较。一个真实的数据集也被用于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1