Mathias Fischer, W. Lamersdorf, J. Liebeherr, M. Mühlhäuser
{"title":"Introduction to the Special Section on Recent Advances in Networks and Distributed Systems","authors":"Mathias Fischer, W. Lamersdorf, J. Liebeherr, M. Mühlhäuser","doi":"10.1145/3584743","DOIUrl":null,"url":null,"abstract":"The history of research and development for the Internet has alternated between time periods of grand new visions and time periods concerned with integrating new advances in information and communication technology. As we entered the 21st century, many voices called for a redesign of the Internet architecture. The Internet was said to be ossified in the sense that its ability to incorporate major upgrades had been largely lost. Viewed as being in a state beyond repair, the era saw calls for and many efforts on a clean-slate design of the Internet architecture. A decade on – and with the Internet architecture largely unchanged – the appetite for big solutions has largely waned, and been replaced by efforts that seek to adapt networks and distributed systems to challenges posed by the advent of the Internet-of-Things, network softwarization, mission-critical applications, and artificial intelligence: IoT. The Internet-of-Things (IoT) will boost the number of Internet nodes well beyond the billions, which will lead to new traffic patterns (e.g., high-frequency low-volume) and resource requirements. SDN++. Softwarization is ‘conquering’ the net. Technologies such as software-defined networking (SDN) and network function virtualization (NFV) will continue to deliver increased flexibility for providing network services. As this softwarization significantly increases the complexity of today’s networks, new security problems will emerge. MCA. Mission-critical applications (MCA), which used to be confined to dedicated real-time systems and networks, such as time-sensitive networks (TSN), industrial Ethernet, and so on, are migrating to public and wide area networks. This impacts technologies and protocols, such as ultrareliable low latency communications (URLLC) in 5G networks. Moreover, delay requirements of real-time applications create a need to move cloud functionality closer to the action scene, e.g., via fog and edge computing. AI. The resurgence of artificial intelligence (AI), evoked by stunning successes of machine learning, boosts the need for computing resources that cannot be embedded in IoT devices and","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"22 1","pages":"1 - 3"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3584743","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The history of research and development for the Internet has alternated between time periods of grand new visions and time periods concerned with integrating new advances in information and communication technology. As we entered the 21st century, many voices called for a redesign of the Internet architecture. The Internet was said to be ossified in the sense that its ability to incorporate major upgrades had been largely lost. Viewed as being in a state beyond repair, the era saw calls for and many efforts on a clean-slate design of the Internet architecture. A decade on – and with the Internet architecture largely unchanged – the appetite for big solutions has largely waned, and been replaced by efforts that seek to adapt networks and distributed systems to challenges posed by the advent of the Internet-of-Things, network softwarization, mission-critical applications, and artificial intelligence: IoT. The Internet-of-Things (IoT) will boost the number of Internet nodes well beyond the billions, which will lead to new traffic patterns (e.g., high-frequency low-volume) and resource requirements. SDN++. Softwarization is ‘conquering’ the net. Technologies such as software-defined networking (SDN) and network function virtualization (NFV) will continue to deliver increased flexibility for providing network services. As this softwarization significantly increases the complexity of today’s networks, new security problems will emerge. MCA. Mission-critical applications (MCA), which used to be confined to dedicated real-time systems and networks, such as time-sensitive networks (TSN), industrial Ethernet, and so on, are migrating to public and wide area networks. This impacts technologies and protocols, such as ultrareliable low latency communications (URLLC) in 5G networks. Moreover, delay requirements of real-time applications create a need to move cloud functionality closer to the action scene, e.g., via fog and edge computing. AI. The resurgence of artificial intelligence (AI), evoked by stunning successes of machine learning, boosts the need for computing resources that cannot be embedded in IoT devices and
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.