S. N. Aidit, Fazliyatul Azwa Md Rezali, Nurul Hidayah Mohamad Nor, N. Yusoff, Li-Ya Ma, S. F. Wan Muhamad Hatta, N. Soin
{"title":"Hydrothermal synthesis of zinc oxide/PEDOT:PSS composite for flexible temperature sensor application","authors":"S. N. Aidit, Fazliyatul Azwa Md Rezali, Nurul Hidayah Mohamad Nor, N. Yusoff, Li-Ya Ma, S. F. Wan Muhamad Hatta, N. Soin","doi":"10.1088/2058-8585/acd06e","DOIUrl":null,"url":null,"abstract":"A flexible and printable temperature sensor was proposed for a fast detection of temperature measurements. A hybrid composite of zinc oxide (ZnO) and a conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) was utilized as the temperature-sensing layer. An interdigitated electrodes structure based on silver (Ag) ink was used to electrically connect the composite through a facile drop-casting technique. A standout aspect of this work is the presentation of ZnO/PEDOT:PSS as a temperature-sensing layer. The PEDOT:PSS flakes were connected by hydrothermally prepared ZnO nanorods, which increased the composite sheets’ electrical conductivity. The linearity, sensitivity, stability and dynamic response of the flexible sensor were examined from a temperature of 29 °C–60 °C. The sensor has high sensitivity of 1.06% °C−1 with response and recovery times of 5 s and 12.7 s, respectively. This work clearly demonstrates the potential of ZnO/PEDOT:PSS composite for flexible temperature sensor and adds to the rapidly expanding field of personalized mobile healthcare.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acd06e","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A flexible and printable temperature sensor was proposed for a fast detection of temperature measurements. A hybrid composite of zinc oxide (ZnO) and a conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) was utilized as the temperature-sensing layer. An interdigitated electrodes structure based on silver (Ag) ink was used to electrically connect the composite through a facile drop-casting technique. A standout aspect of this work is the presentation of ZnO/PEDOT:PSS as a temperature-sensing layer. The PEDOT:PSS flakes were connected by hydrothermally prepared ZnO nanorods, which increased the composite sheets’ electrical conductivity. The linearity, sensitivity, stability and dynamic response of the flexible sensor were examined from a temperature of 29 °C–60 °C. The sensor has high sensitivity of 1.06% °C−1 with response and recovery times of 5 s and 12.7 s, respectively. This work clearly demonstrates the potential of ZnO/PEDOT:PSS composite for flexible temperature sensor and adds to the rapidly expanding field of personalized mobile healthcare.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.