Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors

Yuanjun Shen, Zhanquan Shi, B. Yan
{"title":"Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors","authors":"Yuanjun Shen, Zhanquan Shi, B. Yan","doi":"10.32527/2019/101435","DOIUrl":null,"url":null,"abstract":"Carboxylesterases (CESs, E.C.3.1.1.1) constitute a large class of enzymes that determine the therapeutic efficacy and toxicity of ester/amide drugs. Without exceptions, all mammalian species studied express multiple forms of carboxylesterases. Two human carboxylesterases, CES1 and CES2, are major contributors to hydrolytic biotransformation. Recent studies have identified therapeutic agents that potently inhibit carboxylesterases-based catalysis. Some of them are reversible whereas others irreversible. The adrenergic antagonist carvedilol, for example, reversibly inhibits CES2 but this carboxylesterase is irreversibly inhibited by orlistat, a popular anti-obesity medicine. Kinetically, the inhibition occurs competitively, non-competitively or in combination, depending on a carboxylesterase. For example, the calcium channel blocker diltiazem competitively inhibits CES1 but non-competitively inhibits CES2. In addition to inhibited catalysis, several therapeutic agents or disease mediators have been shown to regulate the expression of carboxylesterases. For example, the antiepileptic drug phenobarbital induces both human and rodent carboxylesterases, whereas the antibiotic rifampicin induces human carboxylesterases only. Conversely, the proinflammatory cytokine interleukin-6 (IL-6) suppresses the expression of carboxylesterases across species, but depending on the concentrations of glucose in the culture medium. Transactivation, transrepression and altered mRNA stability contribute to the regulated expression. Several nuclear receptors are established to support the regulation including constitutive androstane receptor, glucocorticoid receptor and pregnane X receptor. In addition, non-ligand transcription factors are also involved in the regulation and exemplified by differentiated embryo chondrocyte-1, nuclear factor (erythroid-derived 2)-like 2 and tumor protein p53. These transcription factors coordinate the regulated expression of carboxylesterases, constituting a regulatory network for the hydrolytic biotransformation.","PeriodicalId":30720,"journal":{"name":"Nuclear Receptor Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Receptor Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32527/2019/101435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Carboxylesterases (CESs, E.C.3.1.1.1) constitute a large class of enzymes that determine the therapeutic efficacy and toxicity of ester/amide drugs. Without exceptions, all mammalian species studied express multiple forms of carboxylesterases. Two human carboxylesterases, CES1 and CES2, are major contributors to hydrolytic biotransformation. Recent studies have identified therapeutic agents that potently inhibit carboxylesterases-based catalysis. Some of them are reversible whereas others irreversible. The adrenergic antagonist carvedilol, for example, reversibly inhibits CES2 but this carboxylesterase is irreversibly inhibited by orlistat, a popular anti-obesity medicine. Kinetically, the inhibition occurs competitively, non-competitively or in combination, depending on a carboxylesterase. For example, the calcium channel blocker diltiazem competitively inhibits CES1 but non-competitively inhibits CES2. In addition to inhibited catalysis, several therapeutic agents or disease mediators have been shown to regulate the expression of carboxylesterases. For example, the antiepileptic drug phenobarbital induces both human and rodent carboxylesterases, whereas the antibiotic rifampicin induces human carboxylesterases only. Conversely, the proinflammatory cytokine interleukin-6 (IL-6) suppresses the expression of carboxylesterases across species, but depending on the concentrations of glucose in the culture medium. Transactivation, transrepression and altered mRNA stability contribute to the regulated expression. Several nuclear receptors are established to support the regulation including constitutive androstane receptor, glucocorticoid receptor and pregnane X receptor. In addition, non-ligand transcription factors are also involved in the regulation and exemplified by differentiated embryo chondrocyte-1, nuclear factor (erythroid-derived 2)-like 2 and tumor protein p53. These transcription factors coordinate the regulated expression of carboxylesterases, constituting a regulatory network for the hydrolytic biotransformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羧酸酯酶:核受体和其他转录因子的药理学抑制调节表达和转录参与
羧酸酯酶(CESs, E.C.3.1.1.1)是一类决定酯/酰胺类药物治疗效果和毒性的酶。无一例外,所有被研究的哺乳动物都表达多种形式的羧酸酯酶。两种人类羧酸酯酶CES1和CES2是水解生物转化的主要贡献者。最近的研究已经确定了有效抑制羧酸酯酶催化的治疗剂。有些是可逆的,有些是不可逆的。例如,肾上腺素能拮抗剂卡维地洛可逆地抑制CES2,但这种羧酸酯酶被奥利司他(一种流行的抗肥胖药物)不可逆地抑制。动力学上,抑制发生竞争性,非竞争性或联合,取决于羧酸酯酶。例如,钙通道阻滞剂地尔硫卓竞争性抑制CES1,但非竞争性抑制CES2。除了抑制催化外,一些治疗药物或疾病介质已被证明可以调节羧酸酯酶的表达。例如,抗癫痫药物苯巴比妥能诱导人和啮齿动物的羧酸酯酶,而抗生素利福平只诱导人的羧酸酯酶。相反,促炎细胞因子白细胞介素-6 (IL-6)抑制不同物种间羧酸酯酶的表达,但这取决于培养基中葡萄糖的浓度。转激活、转抑制和mRNA稳定性的改变有助于调控表达。几个核受体被建立支持调控,包括构形雄甾受体、糖皮质激素受体和孕激素X受体。此外,非配体转录因子也参与调控,如分化胚胎软骨细胞1、核因子(红细胞衍生2)样2和肿瘤蛋白p53。这些转录因子协调羧酸酯酶的调控表达,构成水解生物转化的调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Lipids and NMR: More Than Mere Acquaintances Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors SLICC 12 Criteria Are More Effectiveness than ACR 97 Score about Systemic Lupus Erythematosus Diagnosis Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity Ligand-Induced Allosteric Effects Governing SR Signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1