Ligand-Induced Allosteric Effects Governing SR Signaling

C. Okafor, J. K. Colucci, E. Ortlund
{"title":"Ligand-Induced Allosteric Effects Governing SR Signaling","authors":"C. Okafor, J. K. Colucci, E. Ortlund","doi":"10.32527/2019/101382","DOIUrl":null,"url":null,"abstract":"Steroid receptors (SRs) are a class of ligand-regulated transcription factors that regulate gene expression in response to the binding of steroid hormones. Ligand binding drives conformational changes within the SR ligand binding domain that alters the receptors' affinity for coregulator proteins that in turn modulate chromatin state and either promote or block the recruitment of transcriptional machinery to a gene. Structural characterizations of SRs have provided insight into how these conformational rearrangements modulate receptor function, including signaling between the ligand binding pocket and the site of coregulator binding. Here, we review some of the proposed structural mechanisms put forward to explain the ability of ligands to modulate SR function. We also provide a discussion on computational methods that have contributed to the elucidation of SR allosteric regulation. Finally, we consider broader discussions of allostery within the SR family, such as receptor-induced reverse allostery and allosteric binding sites located outside of the canonical ligand interaction site.","PeriodicalId":30720,"journal":{"name":"Nuclear Receptor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Receptor Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32527/2019/101382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Steroid receptors (SRs) are a class of ligand-regulated transcription factors that regulate gene expression in response to the binding of steroid hormones. Ligand binding drives conformational changes within the SR ligand binding domain that alters the receptors' affinity for coregulator proteins that in turn modulate chromatin state and either promote or block the recruitment of transcriptional machinery to a gene. Structural characterizations of SRs have provided insight into how these conformational rearrangements modulate receptor function, including signaling between the ligand binding pocket and the site of coregulator binding. Here, we review some of the proposed structural mechanisms put forward to explain the ability of ligands to modulate SR function. We also provide a discussion on computational methods that have contributed to the elucidation of SR allosteric regulation. Finally, we consider broader discussions of allostery within the SR family, such as receptor-induced reverse allostery and allosteric binding sites located outside of the canonical ligand interaction site.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配体诱导的SR信号变构效应
甾体受体(SRs)是一类配体调节的转录因子,在类固醇激素的结合下调节基因表达。配体结合驱动SR配体结合区域内的构象变化,改变受体对共调节蛋白的亲和力,进而调节染色质状态,促进或阻断转录机制对基因的募集。SRs的结构特征揭示了这些构象重排如何调节受体功能,包括配体结合袋和共调节剂结合位点之间的信号传导。在这里,我们回顾了一些提出的结构机制,以解释配体调节SR功能的能力。我们还提供了计算方法的讨论,有助于阐明SR变构调节。最后,我们考虑了SR家族中更广泛的变构讨论,例如受体诱导的反向变构和位于规范配体相互作用位点之外的变构结合位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Lipids and NMR: More Than Mere Acquaintances Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors SLICC 12 Criteria Are More Effectiveness than ACR 97 Score about Systemic Lupus Erythematosus Diagnosis Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity Ligand-Induced Allosteric Effects Governing SR Signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1