Development of a flexible piezoelectric and triboelectric energy harvester with piezo capacitive sensing ability from barium tungstate nanorod-dispersed PVDF nanofabrics
Govind S. Ekbote, M. Khalifa, B. Venkatesa Perumal, S. Anandhan
{"title":"Development of a flexible piezoelectric and triboelectric energy harvester with piezo capacitive sensing ability from barium tungstate nanorod-dispersed PVDF nanofabrics","authors":"Govind S. Ekbote, M. Khalifa, B. Venkatesa Perumal, S. Anandhan","doi":"10.1088/2058-8585/acd010","DOIUrl":null,"url":null,"abstract":"Lead-free flexible piezoelectric nanogenerator (PNG) and triboelectric nanogenerator (TENG) are sought after due to their ability to produce electricity by harnessing wasteful mechanical energy. A comprehensive understanding of additives and processing techniques is crucial for fine-tuning the performance of such energy systems. We have investigated in detail the effect of the addition of reverse microemulsion synthesized barium tungstate nanorods (BWN) on morphology, crystallinity, polymorphism of electrospun nanofabrics of poly(vinylidene fluoride) (PVDF). The electroactive phase content of the nanofabrics was enhanced upon the addition of BWN and the highest electroactive phase content of 86.5% was observed in the nanofabric containing 3 wt% of BWN. The dielectric constant of the nanofabric containing 5 wt% BWN was ∼1.96 times higher than that of pristine electrospun PVDF nanofabric (EPVDF). The ratio of relative change in the capacitance to initial capacitance of the sensor fabricated from the same system was ∼4 times greater than that of EPVDF. Consequently, its piezoelectric and triboelectric performances were improved. The PNG fabricated using the nanofabric containing 3 wt% BWN produced the highest open-circuit voltage of 8 V under an applied load of 8 N. A TENG made using the same system was able to produce a voltage output of 200 V, which was 1.77 times as high as that of EPVDF under one-finger tapping in contact-separation mode. The same composite nanofabric produced piezoelectric and triboelectric power densities of 4.3 µW cm−2 and 646 µW cm−2, respectively. The TENG was able to light 40 LEDs under one finger tapping. Fluttering-driven TENG fabricated using the aforementioned nanofabric was able to produce a triboelectric voltage of 84 V at a wind speed of 7 m s−1. Overall, these nanofabrics could be a potential material for energy harvesting devices for powering wearable devices, environmental sensors, and internet of things.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acd010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-free flexible piezoelectric nanogenerator (PNG) and triboelectric nanogenerator (TENG) are sought after due to their ability to produce electricity by harnessing wasteful mechanical energy. A comprehensive understanding of additives and processing techniques is crucial for fine-tuning the performance of such energy systems. We have investigated in detail the effect of the addition of reverse microemulsion synthesized barium tungstate nanorods (BWN) on morphology, crystallinity, polymorphism of electrospun nanofabrics of poly(vinylidene fluoride) (PVDF). The electroactive phase content of the nanofabrics was enhanced upon the addition of BWN and the highest electroactive phase content of 86.5% was observed in the nanofabric containing 3 wt% of BWN. The dielectric constant of the nanofabric containing 5 wt% BWN was ∼1.96 times higher than that of pristine electrospun PVDF nanofabric (EPVDF). The ratio of relative change in the capacitance to initial capacitance of the sensor fabricated from the same system was ∼4 times greater than that of EPVDF. Consequently, its piezoelectric and triboelectric performances were improved. The PNG fabricated using the nanofabric containing 3 wt% BWN produced the highest open-circuit voltage of 8 V under an applied load of 8 N. A TENG made using the same system was able to produce a voltage output of 200 V, which was 1.77 times as high as that of EPVDF under one-finger tapping in contact-separation mode. The same composite nanofabric produced piezoelectric and triboelectric power densities of 4.3 µW cm−2 and 646 µW cm−2, respectively. The TENG was able to light 40 LEDs under one finger tapping. Fluttering-driven TENG fabricated using the aforementioned nanofabric was able to produce a triboelectric voltage of 84 V at a wind speed of 7 m s−1. Overall, these nanofabrics could be a potential material for energy harvesting devices for powering wearable devices, environmental sensors, and internet of things.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.