R. Beautlin Nisha, C. I. Anish, N. Danielsam, S. Sanjith, S. Gobalakrishnan, M. Jaya Rajan, M. Helal, Amal A. Alharthi, R. Sami, R. Zewail, Hilary Uguru, N. Aljuraide, Murthy Chavali
{"title":"Characterization and Dye Removal Application Using Initiated Carbon Originated from Rubber Seed Shell Biomass","authors":"R. Beautlin Nisha, C. I. Anish, N. Danielsam, S. Sanjith, S. Gobalakrishnan, M. Jaya Rajan, M. Helal, Amal A. Alharthi, R. Sami, R. Zewail, Hilary Uguru, N. Aljuraide, Murthy Chavali","doi":"10.1166/jbmb.2023.2268","DOIUrl":null,"url":null,"abstract":"The utilization of agricultural waste biomass presents an exciting substitute, established on its possibility to be switched into initiated carbon. In this research, initiated (activated) carbon (AC) was formulated from rubber seed shell biomass, infused with ammonium chloride at a\n temperature of 500 °C for 2 h. The activated carbon was characterized by its functional groups, thermal stability, surface morphology, and elemental identification by using FTIR, TGA/DTA, and SEM/EDAX. Additionally, the AC remediation strength was assessed with dye (Congo Red) under various\n parameters like dosage and pH; and the Langmuir and Freundlich adsorption isotherm prototypes were used to evaluate the utmost uptake (qmax) of Congo Red by the adsorptive material. The maximum dye adsorption capacity was achieved at 24.35 g/L and fits well in the Langmuir\n isotherm model. Therefore, the findings of this research reveal the possibility of utilizing rubber seed shell biomass as economical and competent raw ingredients to manufacture initiated carbon for wastewater treatment, to improve (increase) the water potability level.","PeriodicalId":15157,"journal":{"name":"Journal of Biobased Materials and Bioenergy","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biobased Materials and Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbmb.2023.2268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The utilization of agricultural waste biomass presents an exciting substitute, established on its possibility to be switched into initiated carbon. In this research, initiated (activated) carbon (AC) was formulated from rubber seed shell biomass, infused with ammonium chloride at a
temperature of 500 °C for 2 h. The activated carbon was characterized by its functional groups, thermal stability, surface morphology, and elemental identification by using FTIR, TGA/DTA, and SEM/EDAX. Additionally, the AC remediation strength was assessed with dye (Congo Red) under various
parameters like dosage and pH; and the Langmuir and Freundlich adsorption isotherm prototypes were used to evaluate the utmost uptake (qmax) of Congo Red by the adsorptive material. The maximum dye adsorption capacity was achieved at 24.35 g/L and fits well in the Langmuir
isotherm model. Therefore, the findings of this research reveal the possibility of utilizing rubber seed shell biomass as economical and competent raw ingredients to manufacture initiated carbon for wastewater treatment, to improve (increase) the water potability level.