{"title":"A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique","authors":"Kuang-Wei Cheng, Wei-Wei Chen, Shang-De Yang","doi":"10.1109/LMWC.2022.3191116","DOIUrl":null,"url":null,"abstract":"This letter presents a low-power current-reuse and device-reuse low noise amplifier (LNA) for sub-GHz wideband applications. Based on the shunt-feedback common-gate (SFBCG) hybrid topology and the proposed current/device-reuse shunt-feedback (SFB) technique, $g_{m}$ restriction is alleviated. Moreover, the degree of design freedom is added by coupling the output to the gate of the in-phase current source transistor to activate positive feedback without extra power burden, thereby achieving a higher gain and lower noise design. Implemented in 90-nm CMOS technology, this LNA prototype has an active area of 0.075 mm2. The measurement results show a peak gain of 21.3 dB with 3-dB bandwidth of 50–800 MHz, noise figure of 4.5 dB, third-order intercept point (IIP3) of −7.1 dBm, and power dissipation of 1.2 mW.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1455-1458"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3191116","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a low-power current-reuse and device-reuse low noise amplifier (LNA) for sub-GHz wideband applications. Based on the shunt-feedback common-gate (SFBCG) hybrid topology and the proposed current/device-reuse shunt-feedback (SFB) technique, $g_{m}$ restriction is alleviated. Moreover, the degree of design freedom is added by coupling the output to the gate of the in-phase current source transistor to activate positive feedback without extra power burden, thereby achieving a higher gain and lower noise design. Implemented in 90-nm CMOS technology, this LNA prototype has an active area of 0.075 mm2. The measurement results show a peak gain of 21.3 dB with 3-dB bandwidth of 50–800 MHz, noise figure of 4.5 dB, third-order intercept point (IIP3) of −7.1 dBm, and power dissipation of 1.2 mW.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.