{"title":"Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase","authors":"Du-Xin Li, Zi-Yan Qi, Jiang-Yun Liu, Jian-Qin Zhou","doi":"10.1016/j.ejbt.2022.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The aim of the present study was to investigate the effect of substrate conformational structure changes on the laccase-induced protein cross-linking. The effects of laccase amount, pH, and ferulic acid (FA) on the enzymatic cross-linking of substrate, Cyt C, were determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. High-performance size exclusion chromatography, laser particle size analysis and isothermal titration calorimetry (ITC) were also applied to investigate the cross-linking product and enthalpy changes. Structural changes of Cyt C at different pH values were analyzed by ultraviolet–visible (UV–vis), fluorescence, and circular dichroism (CD) measurements.</p></div><div><h3>Results</h3><p>Complete cross-linking, partial cross-linking, minute cross-linking, and no cross-linking occurred at pH 2.0, 4.0, 6.0, and 8.0, respectively. ITC analysis demonstrated that the enzymatic cross-linking of Cyt C was an endothermic process. The UV–vis, fluorescence, and CD measurements exhibited that the tertiary structure of Cyt C was disrupted, and part of the α-helical polypeptide region unfolded at pH 2.0. The structural flexibilities decreased, and the tertiary structure of Cyt C became increasingly compact with the increase in pH values from 4.0 to 8.0. The gradual changes in the structure of Cyt C at different pH values were in accordance with the cross-linking results of Cyt C catalyzed by laccase.</p></div><div><h3>Conclusions</h3><p>The results demonstrated that minute structure changes of substrate had a remarkable effect on the laccase-induced cross-linking. The findings promote the understanding of the substrate requirement of laccase in protein cross-linking and are instructive for the modulation of laccase-induced protein cross-linking.</p><p><strong>How to cite:</strong> Li D-X, Qi Z-Y, Liu J-Y, et al. Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. Electron J Biotechnol 2022;60. https://doi.org/10.1016/j.ejbt.2022.07.002.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"60 ","pages":"Pages 1-10"},"PeriodicalIF":2.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000288/pdfft?md5=07ec57c82f205b529a00f4e302c502c9&pid=1-s2.0-S0717345822000288-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000288","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The aim of the present study was to investigate the effect of substrate conformational structure changes on the laccase-induced protein cross-linking. The effects of laccase amount, pH, and ferulic acid (FA) on the enzymatic cross-linking of substrate, Cyt C, were determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. High-performance size exclusion chromatography, laser particle size analysis and isothermal titration calorimetry (ITC) were also applied to investigate the cross-linking product and enthalpy changes. Structural changes of Cyt C at different pH values were analyzed by ultraviolet–visible (UV–vis), fluorescence, and circular dichroism (CD) measurements.
Results
Complete cross-linking, partial cross-linking, minute cross-linking, and no cross-linking occurred at pH 2.0, 4.0, 6.0, and 8.0, respectively. ITC analysis demonstrated that the enzymatic cross-linking of Cyt C was an endothermic process. The UV–vis, fluorescence, and CD measurements exhibited that the tertiary structure of Cyt C was disrupted, and part of the α-helical polypeptide region unfolded at pH 2.0. The structural flexibilities decreased, and the tertiary structure of Cyt C became increasingly compact with the increase in pH values from 4.0 to 8.0. The gradual changes in the structure of Cyt C at different pH values were in accordance with the cross-linking results of Cyt C catalyzed by laccase.
Conclusions
The results demonstrated that minute structure changes of substrate had a remarkable effect on the laccase-induced cross-linking. The findings promote the understanding of the substrate requirement of laccase in protein cross-linking and are instructive for the modulation of laccase-induced protein cross-linking.
How to cite: Li D-X, Qi Z-Y, Liu J-Y, et al. Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. Electron J Biotechnol 2022;60. https://doi.org/10.1016/j.ejbt.2022.07.002.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering