Yanan Wu , Shouliang Qi , Jie Feng , Runsheng Chang , Haowen Pang , Jie Hou , Mengqi Li , Yingxi Wang , Shuyue Xia , Wei Qian
{"title":"Attention-guided multiple instance learning for COPD identification: To combine the intensity and morphology","authors":"Yanan Wu , Shouliang Qi , Jie Feng , Runsheng Chang , Haowen Pang , Jie Hou , Mengqi Li , Yingxi Wang , Shuyue Xia , Wei Qian","doi":"10.1016/j.bbe.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chronic obstructive pulmonary disease<span> (COPD) is a complex and multi-component respiratory disease. Computed tomography (CT) images can characterize lesions in COPD patients, but the image intensity and morphology of lung components have not been fully exploited. Two datasets (Dataset 1 and 2) comprising a total of 561 subjects were obtained from two centers. A multiple instance learning (MIL) method is proposed for COPD identification. First, randomly selected slices (instances) from CT scans and multi-view 2D snapshots of the 3D </span></span>airway tree<span><span> and lung field extracted from CT images are acquired. Then, three attention-guided MIL models (slice-CT, snapshot-airway, and snapshot-lung-field models) are trained. In these models, a deep convolution<span> neural network (CNN) is utilized for feature extraction. Finally, the outputs of the above three MIL models are combined using </span></span>logistic regression to produce the final prediction. For Dataset 1, the accuracy of the slice-CT MIL model with 20 instances was 88.1%. The backbone of VGG-16 outperformed Alexnet, Resnet18, Resnet26, and Mobilenet_v2 in feature extraction. The snapshot-airway and snapshot-lung-field MIL models achieved accuracies of 89.4% and 90.0%, respectively. After the three models were combined, the accuracy reached 95.8%. The proposed model outperformed several state-of-the-art methods and afforded an accuracy of 83.1% for the external dataset (Dataset 2). The proposed weakly supervised MIL method is feasible for COPD identification. The effective CNN module and attention-guided MIL pooling module contribute to performance enhancement. The morphology information of the airway and lung field is beneficial for identifying COPD.</span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000384","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and multi-component respiratory disease. Computed tomography (CT) images can characterize lesions in COPD patients, but the image intensity and morphology of lung components have not been fully exploited. Two datasets (Dataset 1 and 2) comprising a total of 561 subjects were obtained from two centers. A multiple instance learning (MIL) method is proposed for COPD identification. First, randomly selected slices (instances) from CT scans and multi-view 2D snapshots of the 3D airway tree and lung field extracted from CT images are acquired. Then, three attention-guided MIL models (slice-CT, snapshot-airway, and snapshot-lung-field models) are trained. In these models, a deep convolution neural network (CNN) is utilized for feature extraction. Finally, the outputs of the above three MIL models are combined using logistic regression to produce the final prediction. For Dataset 1, the accuracy of the slice-CT MIL model with 20 instances was 88.1%. The backbone of VGG-16 outperformed Alexnet, Resnet18, Resnet26, and Mobilenet_v2 in feature extraction. The snapshot-airway and snapshot-lung-field MIL models achieved accuracies of 89.4% and 90.0%, respectively. After the three models were combined, the accuracy reached 95.8%. The proposed model outperformed several state-of-the-art methods and afforded an accuracy of 83.1% for the external dataset (Dataset 2). The proposed weakly supervised MIL method is feasible for COPD identification. The effective CNN module and attention-guided MIL pooling module contribute to performance enhancement. The morphology information of the airway and lung field is beneficial for identifying COPD.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.