A. Alanen, Olivia L. Bruce, L. Benson, Mathieu Chin, C. van den Berg, M. Jordan, R. Ferber, K. Pasanen
{"title":"Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units","authors":"A. Alanen, Olivia L. Bruce, L. Benson, Mathieu Chin, C. van den Berg, M. Jordan, R. Ferber, K. Pasanen","doi":"10.3390/biomechanics3010014","DOIUrl":null,"url":null,"abstract":"This study aimed to examine the utility of inertial measurement unit (IMU) technology to identify angle, step-specific, and side-specific differences between youth soccer players with and without a history of lower limb injury during soccer-specific field tests. Thirty-two youths (mean age 16.4 years) who were elite soccer players (Females n = 13, Males n = 19) wore IMUs during pre- and postseason soccer-specific change-of-direction assessments. A response feature analysis was used to compare the change in peak resultant acceleration of the groups at a level of significance of p < 0.05. Statistical analysis revealed significant differences in change of peak resultant acceleration of right leg final foot contact in a 180° pivot turn (p = 0.012, ES = 1.0) and a 90° cut (p = 0.04, ES = 0.75) between the two groups. These data suggest that players with a history of lower limb injury might experience greater angle and side-specific change within a season in peak resultant acceleration when compared with injury-free athletes. This study demonstrates that IMUs may present a useful method to analyze youth soccer players’ change of direction movement after returning to play. These results can inform future studies investigating player monitoring and may prove to be a useful tool for coaches when designing individualized training programs in this population.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to examine the utility of inertial measurement unit (IMU) technology to identify angle, step-specific, and side-specific differences between youth soccer players with and without a history of lower limb injury during soccer-specific field tests. Thirty-two youths (mean age 16.4 years) who were elite soccer players (Females n = 13, Males n = 19) wore IMUs during pre- and postseason soccer-specific change-of-direction assessments. A response feature analysis was used to compare the change in peak resultant acceleration of the groups at a level of significance of p < 0.05. Statistical analysis revealed significant differences in change of peak resultant acceleration of right leg final foot contact in a 180° pivot turn (p = 0.012, ES = 1.0) and a 90° cut (p = 0.04, ES = 0.75) between the two groups. These data suggest that players with a history of lower limb injury might experience greater angle and side-specific change within a season in peak resultant acceleration when compared with injury-free athletes. This study demonstrates that IMUs may present a useful method to analyze youth soccer players’ change of direction movement after returning to play. These results can inform future studies investigating player monitoring and may prove to be a useful tool for coaches when designing individualized training programs in this population.